Skip to main content

PQ Analysis of T-VSI and ICT-VSI with Their Impacts on 3-P 3-W Utility System

  • Conference paper
  • First Online:
Smart Technologies for Power and Green Energy

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 443))

Abstract

This paper establishes inductor coupled T-type voltage source inverter (ICT-VSI) supported distribution static compensator (DSTATCOM) for enhancement of power quality (PQ). The ICT-VSI utilized a inductor network in between the two section of T-type voltage source inverter (T-VSI); for three-phase three-wire (3-P 3-W) electrical utility system, it is established as a power conditioner. The new topology produces a balanced voltage at point of common coupling (PCC) with good quality and low total harmonic distortion (THD) source currents, which improves the power quality (PQ) in 3-P 3-W traditional electrical utility system. The comparative evaluations of T-VSI with ICT-VSI are presented in the literature and the strength and effectiveness of the ICT-VSI is verified by simulations using MATLAB/Simulink environment. Finally, justified the advantages of the ICT-VSI on the base of PQ issues considering the standard value of IEEE-2030-7-2017 & IEC-61000-1 grid code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Mangaraj, A.K. Panda, Performance analysis of DSTATCOM employing various control algorithms. IET Gener. Transm. Distrib. 11(10), 2643–2653 (2017)

    Article  Google Scholar 

  2. S.R. Arya, R. Niwas, K.K. Bhalla, B. Singh, A. Chandra, K. Al-Haddad, Power quality improvement in isolated distributed power generating system using DSTATCOM. IEEE Trans. Ind. Appl. 51(6), 4766–4774 (2015)

    Article  Google Scholar 

  3. M. BarghiLatran, A. Teke, Y. Yoldaş, Mitigation of power quality problems using distribution static synchronous compensator: a comprehensive review. IET Power Electron. 8(7), 1312–1328 (2015)

    Article  Google Scholar 

  4. K.V. Singh, H.O. Bansal, D.A. Singh, Comprehensive review on hybrid electric vehicles: architectures and components. J. Modern Transp. 27, 77–107 (2019)

    Article  Google Scholar 

  5. T. Penthia, M.M. Mangaraj, A.K. Panda, S.K. Sarangi, Sparse LMS control algorithm for fuel cell based SAPF, in 2016 IEEE Uttar Pradesh Section International Conference on Electrical Computer and Electronics Engineering (UPCON), pp. 72–77 (2016)

    Google Scholar 

  6. V. Kamatchi Kannan, N. Rengarajan, Investigating the performance of photovoltaic based DSTATCOM using Icosϕ algorithm. Int. J. Electr. Power Energy Syst. 54, 376–386 (2014)

    Article  Google Scholar 

  7. M. Schweizer, J.W. Kolar, Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899–907 (2013)

    Article  Google Scholar 

  8. C. Kumar, M.K. Mishra, An improved hybrid DSTATCOM topology to compensate reactive and nonlinear loads. IEEE Trans. Industr. Electron. 61(12), 6517–6527 (2014)

    Article  Google Scholar 

  9. U. Choi, F. Blaabjerg, K. Lee, Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy. IEEE Trans. on Power Electron. 30(5), 2660–2673 (2015)

    Article  Google Scholar 

  10. V.C. Sekhar, K. Kant, B. Singh, DSTATCOM supported induction generator for improving power quality. IET Renew. Power Gener. 10(4), 495–503 (2016)

    Article  Google Scholar 

  11. H. Myneni, G. Siva Kumar, Simple algorithm for current and voltage control of LCL DSTATCOM for power quality improvement. IET Gener. Transm. Distrib. 13(3), 423–434 (2019)

    Article  Google Scholar 

  12. M.M. Mangaraj, A.K. Panda, Modelling and simulation of KHLMS algorithm-based DSTATCOM. IET Power Electron. 12(9), 2304–2311 (2019)

    Article  Google Scholar 

  13. J. He, N. Weise, R. Katebi, L. Wei, N.A.O. Demerdash, A fault tolerant T-type multilevel inverter topology with soft-switching capability based on Si and SiC hybrid phase legs, in IEEE 2016 Energy Conversion Congress and Exposition (ECCE) (2016)

    Google Scholar 

  14. C. Kumar, M.K. Mishra, A Voltage-controlled DSTATCOM for power-quality improvement. IEEE Trans. Power Deliv. 29(3), 1499–1507 (2014)

    Article  Google Scholar 

  15. G. Bhubaneswari, M.G. Nair, Design, simulation and analog circuit implementation of a three phase shunt active filter using Icosϕ algorithm. IEEE Trans. Power Deliv. 23(2), 1222–1235 (2008)

    Article  Google Scholar 

  16. M.M. Mangaraj, J. Sabat, Comparative analysis of both three & fifth level based DSTATCOM using technique, in 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, Odisha, India, pp. 1–6 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Vijay Thakur .

Editor information

Editors and Affiliations

Appendix A

Appendix A

3-phase source voltage (\({v}_{s}\)): 230 V/phase, Fundamental frequency (\({f}_{s}\)): 50 Hz, Resistance of Source (\({R}_{s}\)): 0.5 Ω, Inductance of Source (\({L}_{s}\)): 2 mH, Resistance of Compensator (\({R}_{c}\)): 0.25 Ω, Inductance of Compensator (\({L}_{c}\)): 1.5 mH, AC Proportional controller (\({K}_{\mathrm{pr}}\)): 0.2, AC Integral controller (\({K}_{\mathrm{ir}}\)): 1.1, DC link voltage (\({v}_{\mathrm{dc}}\)): 600 V, Capacitance (\({C}_{\mathrm{dc}}\)): 2000 µF, DC Proportional controller (\({K}_{\mathrm{pa}}\)): 0.01, DC Integral controller (\({K}_{\mathrm{ia}}\)): 0.05, etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangaraj, M., Thakur, R.V., Mishra, S.K., Sabat, J., Patra, A. (2023). PQ Analysis of T-VSI and ICT-VSI with Their Impacts on 3-P 3-W Utility System. In: Dash, R.N., Rathore, A.K., Khadkikar, V., Patel, R., Debnath, M. (eds) Smart Technologies for Power and Green Energy. Lecture Notes in Networks and Systems, vol 443. Springer, Singapore. https://doi.org/10.1007/978-981-19-2764-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2764-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2763-8

  • Online ISBN: 978-981-19-2764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics