Skip to main content

Coating Quality Control Based on State Optimization of Droplets and Splats

  • Chapter
  • First Online:
Micro Process and Quality Control of Plasma Spraying

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 354 Accesses

Abstract

The micro processes such as heating, acceleration, impact, spreading and solidification of spray droplets in plasma jet can guide the optimization design of coating more scientifically. Taking typical ceramic, metal and cermet coatings such as BaTiO3, WC, Fe based amorphous and YSZ as examples, this chapter introduces in detail how to realize rapid optimization of coatings from the micro process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie L, Wu XW, Wang HR et al (1999) Effect of sintering process on electrical properties of medium temperature sintered high medium stability MLC medium. Bull Chin Ceram Soc 1:9–13

    Google Scholar 

  2. Ctibor P, Sedlacek J, Pala Z (2015) Structure and properties of plasma sprayed BaTiO3 coatings after thermal posttreatment. Ceram Int 41(6):7453–7460

    Article  CAS  Google Scholar 

  3. Rajavaram R, Park J, Lee J (2017) Defect induced ferromagnetism in h-BaTiO3 synthesized from t-BaTiO3 by microwave heating. J Alloy Compd 712(25):627–632

    Article  CAS  Google Scholar 

  4. Kolar D, Kunaver U, Re A et al (1998) Exaggerated anisotropic grain growth in hexagonal barium titanate ceramics. Phys Status Solidi 166(1):219–230

    Article  CAS  Google Scholar 

  5. Glaister RM, Kay HF (2002) Cubic-hexagonal transition in BaTiO3. Proc Phys Soc 76(5):763

    Article  Google Scholar 

  6. Zhao T, Chen F, Lu H et al (2000) Thickness and oxygen pressure dependent structural characteristics of BaTiO3 thin films grown by laser molecular beam epitaxy. J Appl Phys 87(10):7442–7447

    Article  CAS  Google Scholar 

  7. Guo HZ, Chen ZH, Cheng BL et al (2005) Structure dynamics of strongly reduced epitaxial BaTiO3-x studied by Raman scattering. J Eur Ceram Soc 25(12):2347–2352

    Article  CAS  Google Scholar 

  8. Chen SY, Ma GZ, Wang HD et al (2017) Research progress on unsteady solidification behavior of plasma sprayed droplet rapidly impinging on matrix. Rare Met Mater Eng 11:3564–3569

    Google Scholar 

  9. Fauchais P, Vardelle A, Vardelle M et al (2004) Knowledge concerning splat formation: an invited review. J Therm Spray Technol 13(3):337–360

    Article  CAS  Google Scholar 

  10. Brossard S, Munroe PR, Tran ATT et al (2010) Study of the effects of surface chemistry on splat formation for plasma sprayed NiCr onto stainless steel substrates. Surf Coat Technol 204(9–10):1599–1607

    Article  CAS  Google Scholar 

  11. El-Hadj AA, Zirari M, Bacha N (2010) Numerical analysis of the effect of the gas temperature on splat formation during thermal spray process. Appl Surf Sci 257(5):1643–1648

    Article  CAS  Google Scholar 

  12. Raessi M, Mostaghimi J, Bussmann M (2006) Effect of surface roughness on splat shapes in the plasma spray coating process. Thin Solid Films 506–507(506):133–135

    Article  CAS  Google Scholar 

  13. Mutter M, Mauer G, Mücke R et al (2016) Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coat Technol 318(25):157–169

    Google Scholar 

  14. Dhiman R, Mcdonald AG, Chandra S (2007) Predicting splat morphology in a thermal spray process. Surf Coat Technol 201(18):7789–7801

    Article  CAS  Google Scholar 

  15. Mulero MA, Zapata J, Vilar R, Gadow R et al (2015) Automated image inspection system to quantify thermal spray splat morphology. Surf Coat Technology 278:1–11

    Google Scholar 

  16. Chen SY, Ma GZ, Wang HD et al (2017) Comparison of solidity and fractal dimension of plasma sprayed splat with different spreading morphologies. Appl Surf Sci 409(1):277–284

    CAS  Google Scholar 

  17. Fu YQ, Su CQ, Guo XP et al (2004) Effect of gas composition on structure and hardness of Al2O3-TiO2 coating. J Dalian Marit Univ 30(1):85–88

    CAS  Google Scholar 

  18. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Springer Japan

    Google Scholar 

  19. Heidinger R, Nazare S (1988) Influence of porosity on the dielectric properties of AlN in the range of 30–40 GHz. Powder Metall Int 20(6):30–32

    CAS  Google Scholar 

  20. Banno H (1987) Effects of shape and volume fraction of closed pores on dielectric, elastic, and electromechanical properties of dielectric and piezoelectric ceramics–a theoretical approach. Am Ceram Soc Bull 66(9):1332–1337

    CAS  Google Scholar 

  21. Verhoeven JAT, Doveren HV (1982) An XPS investigation of the interaction of CH4, C2H2, C2H4 and C2H6 with a barium surface. Surf Sci 123(2):369–383

    Article  CAS  Google Scholar 

  22. Christie AB, Lee J, Sutherland I et al (1983) An XPS study of ion-induced compositional changes with group II and group IV compounds. Appl Surf Sci 15(1):224–237

    Article  CAS  Google Scholar 

  23. Kerber SJ, Bruckner JJ, Wozniak K et al (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol A Vac Surf Films 14(3):1314–1320

    Article  CAS  Google Scholar 

  24. Hong KS, Ha MG, Bae JS et al (2015) Structural characteristics and chemical bonding states with temperature in barium titanate nanopowders prepared by using the solvothermal method. Curr Appl Phys 15(11):1377–1383

    Article  Google Scholar 

  25. Mastelaro VR, Lisboa-Filho PN, Nascente PAP et al (2007) X-ray photoelectron spectroscopy study on sintered Pb1-xLaxTiO3 ferroelectric ceramics. Int Conf Electron Spectrosc Struct 156–158:476–481

    Article  CAS  Google Scholar 

  26. Kröger FA, Vink HJ (1958) Relations between the concentrations of imperfections in solids. J Phys Chem Solids 5(3):208–223

    Article  Google Scholar 

  27. Kröger FA, Nachtrieb NH (1964) The chemistry of imperfect crystals. Phys Today 17(10):66–69

    Article  Google Scholar 

  28. Eror NG, Smyth DM (1978) Nonstoichiometric disorder in single-crystalline BaTiO3 at elevated temperatures. J Solid State Chem 24(3):235–244

    Article  CAS  Google Scholar 

  29. Man JL, You BD, Kang DS (1995) Properties of Mn-doped BaTi4O9-ZnO-Ta2O5 ceramics. J Mater Sci Mater Electron 6(3):173–177

    Article  Google Scholar 

  30. Filimonov DS, Liu ZK, Randall CA (2003) Phase relations in the BaO-TiO2-delta system under highly reducing conditions. Mater Res Bull 38(4):545–553

    Article  CAS  Google Scholar 

  31. Xia HY (2007) Effect of defects on conductance and dielectric loss of BaNd2Ti4O12 microwave dielectric ceramics. Inner Mongolia University

    Google Scholar 

  32. Nasu N (1935) Thermochemistry of titanium oxides. I: the equilibrium TiO2-H2-Ti2O3-H2O. Nippon Kagaku Kaishi 56:542–551

    Google Scholar 

  33. Volenı́K K, Hanousek F, Chráska P et al (1999) In-flight oxidation of high-alloy steels during plasma spraying. Mater Sci Eng A 272(1):199–206

    Google Scholar 

  34. Gong SK, Deng L, Liu FS et al (1996) Investigations on the formation of initial cracks in thermal barrier coatings prepared by EB-PVD. Acta Metallurgica Sinica (English Letters) 9(6):519–522

    Google Scholar 

  35. Rampon R, Marchand O, Filiatre C et al (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342

    Article  CAS  Google Scholar 

  36. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):86–108

    Article  CAS  Google Scholar 

  37. Selvan B, Ramachandran K, Sreekumar KP et al (2009) Numerical and experimental studies on DC plasma spray torch. Vacuum 84(4):44–452

    Article  CAS  Google Scholar 

  38. Rayón E, Bonache V, Salvador MD et al (2011) Hardness and Young's modulus distributions in atmospheric plasma sprayed WC-Co coatings using nanoindentation. Surf Coat Technol 205(17):4192–4197

    Google Scholar 

  39. Nerz J, Kushner B, Rotolico A (1992) Microstructural evaluation of tungsten carbide-cobalt coatings. J Therm Spray Technol 1(2):147–152

    Article  CAS  Google Scholar 

  40. Verdon C, Karimi A, Martin JL (1998) A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: microstructures. Mater Sci Eng A 246(1–2):11–24

    Google Scholar 

  41. Yuan J, Zhan Q, Huang J et al (2013) Decarburization mechanisms of WC–Co during thermal spraying: insights from controlled carbon loss and microstructure characterization. Mater Chem Phys 142(1):165–171

    Article  CAS  Google Scholar 

  42. Li CJ, Ohmori A, Harada Y (1996) Effect of powder structure on the structure of thermally sprayed WC-Co coatings. J Mater Sci 31(3):785–794

    Article  CAS  Google Scholar 

  43. He J, Schoenung JM (2002) A review on nanostructured WC-Co coatings. Surf Coat Technol 157(1):72–79

    Article  CAS  Google Scholar 

  44. He J, Schoenung JM (2006) Nanostructured coatings. Mater Sci Eng A 336(1):274–319

    Google Scholar 

  45. Fauchais P, Vardelle M, Goutier S (2015) Specific measurements of in-flight droplet and particle behavior and coating microstructure in suspension and solution plasma spraying. J Therm Spray Technol 24:1498–1505

    Article  CAS  Google Scholar 

  46. Ganesan A, Yamada M, Fukumoto M (2014) The effect of CFRP surface treatment on the splat morphology and coating adhesion strength. J Therm Spray Technol 23:236–244

    Article  Google Scholar 

  47. Cizek J, Khor KA, Dlouhy I (2013) In-flight temperature and velocity of powder particles of plasma-sprayed TiO2. J Therm Spray Technol 22(8):1320–1327

    Google Scholar 

  48. Sun CQ, Gao Y, Yang DM et al (2013) Measurement of electron temperature and electron density in atmospheric thermal spraying plasma jet. Chin J Vac Sci Technol 12:1209–1213

    Google Scholar 

  49. Yang H, Wang L (2007) Arc voltammetry characteristics of plasma spraying. Trans China Weld Inst 12:77–80+117

    Google Scholar 

  50. Bobzin K, Kopp N, Warda T (2012) Particle in-flight and coating properties of Fe-based feedstock materials sprayed with modern thermal spray systems. J Therm Spray Technol 22(2–3):363–370

    Google Scholar 

  51. Xiong HB, Zheng LL, Li L, Vaidya A (2005) Melting and oxidation behavior of in-flight particles in plasma spray process. Int J Heat Mass Transf 48:5121–5133

    Article  CAS  Google Scholar 

  52. Li L, Vaidya A, Sampath S, Xiong HB, Zheng L (2006) Particle characterization and splat formation of plasma sprayed zirconia. J Therm Spray Technol 15:97–105

    Article  CAS  Google Scholar 

  53. Bai Y, Liu K, Wen ZH (2013) The influence of particle in-flight properties on the microstructure of coatings deposited by the supersonic atmospheric plasma spraying. Ceram Int 39:8549–8553

    Article  CAS  Google Scholar 

  54. Verdon C, Karimi A, Martin JL (1998) A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part1: microstructures. Mater Sci Eng A 246:11–24

    Google Scholar 

  55. Yang Y, Zhang C, Peng Y, Yu Y, Liu L (2012) Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros Sci 59:10–19

    Article  CAS  Google Scholar 

  56. Liu L, Zhang C (2014) Fe-based amorphous coatings: structures and properties. Thin Solid Films 50:70–86

    Article  CAS  Google Scholar 

  57. Kwon J, Park H, Lee I (2014) Effect of gas flow rate on deposition behavior of Fe-based amorphous alloys in vacuum kinetic spray process. Surf Coat Technol 259:585–593

    Article  CAS  Google Scholar 

  58. Zhang C, Guo RQ, Yang Y (2011) Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating. Electrochim Acta 56:6380–6388

    Article  CAS  Google Scholar 

  59. Turnbull D, Chen HS (1969) Formation stability and structure of palladium-silicon based alloy glasses. Acta Mater 17(8):1021–1031

    Article  Google Scholar 

  60. Turnbull D, Cohen M (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 349(1):120–125

    Article  Google Scholar 

  61. Cohen M, Turnbull D (1961) Composition requirements for glass formation in metallic and ionic systems. Nature 189:131–132

    Article  CAS  Google Scholar 

  62. Guo RQ, Zhang C, Chen Q et al (2011) Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF. Corros Sci 53:2351–2356

    Article  CAS  Google Scholar 

  63. Zhou H, Zhang C, Wang W et al (2015) Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders. J Mater Sci Technol 31(1):43–47

    Article  CAS  Google Scholar 

  64. Zhang H, Xie YT, Huang LP et al (2014) Effect of feedstock particle sizes on wear resistance of plasma sprayed Fe-based amorphous coatings. Surf Coat Technol 258:495–502

    Article  CAS  Google Scholar 

  65. Zhang SD, Zhang WL, Wang SG et al (2015) Characterization of three-dimensional porosity in a Fe-based amorphous coating and its correlation with corrosion behavior. Corros Sci 93:211–221

    Article  CAS  Google Scholar 

  66. Stach S, Lamza A, Wróbel Z (2014) 3D image multifractal analysis and pore detection on a stereometric measurement file of a ceramic coating. J Eur Ceram Soc 34:3427–3432

    Article  CAS  Google Scholar 

  67. Curran JA, Clyne TW (2006) Porosity in plasma electrolytic oxide coatings. Acta Mater 54:1985–1993

    Article  CAS  Google Scholar 

  68. Guo WM, Wu YP, Zhang JF et al (2014) Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings: an overview. J Therm Spray Technol 23(7):1157–1180

    Article  CAS  Google Scholar 

  69. Różycka M, Ziewiec K, Błachowski A (2015) Microstructure and fracture surface of the two-component melt-spun amorphous/amorphous composite. J Non-Cryst Solids 412:49–52

    Article  CAS  Google Scholar 

  70. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108

    Article  CAS  Google Scholar 

  71. Bai Y, Han ZH, Li HQ et al (2011) Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings. Surf Coat Technol 205(13–14):3833–3839

    Article  CAS  Google Scholar 

  72. Bai Y, Zhao L, Liu K et al (2014) Fine-lamellar structured thermal barrier coatings fabricated by high efficiency supersonic atmospheric plasma spraying. Vacuum 99(1):119–123

    Article  CAS  Google Scholar 

  73. Bai Y, Zhao L, Wang Y et al (2015) Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloy Compd 632:794–799

    Article  CAS  Google Scholar 

  74. Clarke BD, Mclvor ID (1991) Structure and properties of plain and alloyed ultrahigh carbon steel wire rod. Iron Mak Steel Mak 18(5):331–336

    CAS  Google Scholar 

  75. Xing YZ, Li XH, Wang Q et al (2015) Research progress of particle morphology formation by thermal spraying. Hot Work Technol 24:5–8

    Google Scholar 

  76. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10

    Article  CAS  Google Scholar 

  77. Cizek J, Khor KA, Dlouhy I et al (2013) In-flight temperature and velocity of powder particles of plasma-sprayed TiO2. J Therm Spray Technol 22(8):1320–1327

    Google Scholar 

  78. Yin Z, Tao S, Zhou X et al (2008) Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings. J Eur Ceram Soc 28(6):1143–1148

    Article  CAS  Google Scholar 

  79. Deng ZQ, Liu M, Mao J et al (2017) State and distribution of particles in plasma spray-physical vapor deposition jets. China Surf Eng 30(3):81–88

    Google Scholar 

  80. Bai Y, Zhao L, Qu YM et al (2015) Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloy Compd 644:873–882

    Article  CAS  Google Scholar 

  81. Guessasma S, Montavon G, Coddet C (2005) Velocity and temperature distributions of alumina–titania in-flight particles in the atmospheric plasma spray process. Surf Coat Technol 192(1):70–76

    Article  CAS  Google Scholar 

  82. Chen X (2009) Heat transfer and flow of hot plasma. Science Press, Beijing

    Google Scholar 

  83. Wang Y, Hua J, Liu Z et al (2012) Melting index characterization and thermal conductivity model of plasma sprayed YSZ coatings. J Eur Ceram Soc 32(14):3701–3707

    Article  CAS  Google Scholar 

  84. Tekmen C, Yamazaki M, Tsunekawa Y et al (2008) In-situ plasma spraying: alumina formation and in-flight particle diagnostic. Surf Coat Technol 202(17):4163–4169

    Article  CAS  Google Scholar 

  85. Song X, Liu Z, Suhonen T et al (2015) Effect of melting state on the thermal shock resistance and thermal conductivity of APS ZrO2–7.5 wt.% Y2O3 coatings. Surf Coat Technol 270(120):132–138

    Google Scholar 

  86. Committee on Practical Manual of Engineering Materials. Practical manual of engineering materials. Standards Press of China, Beijing (2002)

    Google Scholar 

  87. Srinivasan V (2007) A critical assessment of in-flight particle state during plasma spraying of YSZ and its implications on coating properties and process reliability. Stony Brook University, New York

    Google Scholar 

  88. Pravdic G, Gani MSJ (1996) The formation of hollow spherical ceramic oxide particles in a d.c. plasma. J Mater Sci 31(13):3487–3495

    Google Scholar 

  89. Lehtinen KEJ, Zachariah MR (2002) Energy accumulation in nanoparticle collision and coalescence processes. J Aerosol Sci 33(2):357–368

    Article  CAS  Google Scholar 

  90. Samadi H, Pershin L, Coyle TW (2010) Effect of in-flight particle properties on deposition of air plasma sprayed forsterite. Surf Coat Technol 204(20):3300–3306

    Article  CAS  Google Scholar 

  91. Golosnoy IO, Paul S, Clyne TW (2008) Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Mater 56(4):874–883

    Article  CAS  Google Scholar 

  92. Cho J, Park J, An J (2017) Low thermal conductivity of atomic layer deposition yttria-stabilized zirconia (YSZ) thin films for thermal insulation applications. J Eur Ceram Soc 37(9):3131–3136

    Article  CAS  Google Scholar 

  93. Wang Q, Wang YP, Ding BJ et al (2013) Research progress in thermal insulation performance of thermal barrier coatings. Funct Mater 1(23):3363–3367

    Google Scholar 

  94. Ghasemi R, Vakilifard H (2017) Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength. Ceram Int 43(12):8556–8563

    Article  CAS  Google Scholar 

  95. Jamali H, Mozafarinia R, Shoja Razavi R et al (2012) Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci 8(3):402–409

    Article  CAS  Google Scholar 

  96. Wang L, Wang Y, Sun XG et al (2011) Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater Des 32(1):36–47

    Article  CAS  Google Scholar 

  97. Xi TG (1981) Thermal properties of inorganic materials. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  98. Zhang D, Zhao Z, Wang B et al (2016) Investigation of a new type of composite ceramics for thermal barrier coatings. Mater Des 112:27–33

    Article  CAS  Google Scholar 

  99. Wang J, Xu F, Wheatley RJ et al (2015) Investigation of La3+ doped Yb2Sn2O7 as new thermal barrier materials. Mater Des 85:423–430

    Article  CAS  Google Scholar 

  100. Rauf A, Yu Q, Jin L et al (2012) Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings. Scripta Mater 66(2):109–112

    Article  CAS  Google Scholar 

  101. Zhou F, Wang Y, Wang L et al (2017) High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings. J Alloy Compd 704:614–623

    Article  CAS  Google Scholar 

  102. Ghasemi R, Shoja-Razavi R, Mozafarinia R et al (2013) Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram Int 39(8):9483–9490

    Article  CAS  Google Scholar 

  103. Hasselman DPH (1978) Effect of cracks on thermal conductivity. J Compos Mater 12(4):403–407

    Article  Google Scholar 

  104. Yang M, Zhu Y, Wang X et al (2017) Effect of five kinds of pores shape on thermal stress properties of thermal barrier coatings by finite element method. Ceram Int 43(13):9664–9678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, G., Chen, S., Wang, H. (2022). Coating Quality Control Based on State Optimization of Droplets and Splats. In: Micro Process and Quality Control of Plasma Spraying. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2742-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2742-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2741-6

  • Online ISBN: 978-981-19-2742-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics