Skip to main content

Enzymes in Organic Synthesis

  • Chapter
  • First Online:
Green Chemistry

Abstract

In the context of “green chemistry” as sustainable science, “CATALYSIS” is one of the exceptionally significant disciplines that facilitate an efficient and cost-effective protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eigen, M., Hammes, G.G.: Elementary steps in enzyme reactions (as Studied by Relaxation Spectrometry). Adv. Enzymol. Rel. Areas Mol. Biol. 25, 1–38 (1963)

    Google Scholar 

  2. Strohmeier, G.A., Pichler, H., May, O., Gruber-Khadjawi, M.: Application of designed enzymes in organic synthesis. Chem. Rev. 111, 4141–4164 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Liese, A., Seelbach, K., Wandrey, C.: Industrial Biotransformations. Wiley-VCH, Weinheim, Germany (2000)

    Book  Google Scholar 

  4. Walsh, P.J., Kozloski, M.C.: Fundamental of Asymmetric Catalysis. University Science Book, Sausalito, California (2008)

    Google Scholar 

  5. Jacobsen, E.N., Pfaltz, A., Yamamoto, H.: Comprehensive Asymmetric Catalysis. Springer Verlag, Newyork (1999)

    Google Scholar 

  6. Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B.: A stepwise huisgen cycloaddition process: Copper(I)-Catalyzed regioselective ligation of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002)

    Article  CAS  Google Scholar 

  7. Tiwari, V.K., Mishra, B.B., Mishra, K.B., Mishra, N., Singh, A.S., Chen, X.: Cu(I)-Catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 116, 3086–3240 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Agrahari, A.K., Bose, P., Jaiswal, M.K., Rajkhova, S., Singh, A.S., Hotha, S., Mishra, N., Tiwari, V.K.: Cu(I)-Catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev. 12, 7638–7956 (2021)

    Article  CAS  Google Scholar 

  9. Chinchilla, R., Najera, C.: The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev. 107, 874–922 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Corbet, J.P., Mignani, G.: Selected patented cross-coupling reactions technologies. Chem. Rev. 106, 2651–2710 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M.: Aryl−Aryl bond formation one century after the discovery of the ullmann reaction. Chem. Rev. 102, 1359–1470 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Climent, M.J., Corma, A., Iborra, S.: Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 111, 1072–1133 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Hong, L., Sun, W., Yang, D., Li, G., Wang, R.: Additive effects on asymmetric catalysis. Chem. Rev. 116, 4006–4123 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Singh, G.S.: Greener approaches to selected asymmetric addition reactions relevant to drug development. Curr. Org. Chem. 25, 1497–1522 (2021)

    Article  CAS  Google Scholar 

  16. List, B., Lerner, R.A., Barbas, C.F.: Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000)

    Article  CAS  Google Scholar 

  17. Ahrendt, K., Borths, C., Macmillan, D.W.C.: New strategies for organic catalysis: the first highly enantioselective organocatalytic diels-alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000)

    Article  CAS  Google Scholar 

  18. Brenna, E., Fuganti, C., Gatti, F.C., Serra, S.: Biocatalytic methods for the synthesis of enantioenriched odor active compounds. Chem. Rev. 111, 4036–4072 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Schmaltz, R.M., Hanson, S.R., Wong, C.H.: Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111, 4259–4307 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Kadokawa, J.-I.: Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. Fessner, W-Dr., He, N., Yi, D., Unruh, P., Knorst, M.: Enzymatic generation of sialoconjugate diversity. In: Riva, S., Fessner, W.-D. (eds.) Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions, Wiley-VCH (2014)

    Google Scholar 

  22. Pollegioni, L., Sacchi, S., Caldinelli, L., Boselli, A., Pilone, M., Piubelli, L., Molla, G.: Engineering the properties of D-Amino acid oxidases by a rational and a directed evolution approach. Curr. Protein Pept. Sci. 8, 600–618 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Paradisi, F., Conway, P.A., Maguireb, A.R., Engel, P.C.: Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the d-enantiomer from racemic mixtures. Org. Biomol. Chem. 6, 3611–3615 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Reetz, M.T., Gotor, V., Alfonso, I., García-Urdiales, E.: In: Asymmetric Organic Synthesis with Enzymes, pp. 21–63. Wiley-VCH, Weinheim, Germany (2008)

    Google Scholar 

  25. Reetz, M.T., Zonta, A., Schimossek, K., Liebeton, K., Jaeger, K.-E.: Creation of enantioselective biocatalysts for organic chemistry by In Vitro evolution. Angew. Chem. Int. Ed. Engl. 36, 2830–2832 (1997)

    Article  CAS  Google Scholar 

  26. Reetz, M.T., Puls, M., Carballeira, J.D., Vogel, A., Jaeger, K.-E., Eggert, T., Thiel, W., Bocola, M., Otte, N.: Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. ChemBioChem 8, 106–112 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Koga, Y., Kato, K., Nakano, H., Yamane, T.: Inverting Enantioselectivity of Burkholderia cepacia KWI-56 Lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and In Vitro expression. J. Mol. Biol. 331, 585–592 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, G., Gao, R., Zheng, L., Zhang, A., Wang, Y., Wang, Q., Feng, Y., Cao, S.: Study on the relationship between structure and enantioselectivity of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J. Mol. Catal. B 38, 148–153 (2006)

    Google Scholar 

  29. Henke, E., Pleiss, J., Bornscheuer, U.T.: Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angew. Chem. Int. Ed. 41, 3211–3213 (2002)

    Article  CAS  Google Scholar 

  30. Heinze, B., Kourist, R., Fransson, L., Hult, K., Bornscheuer, U.T.: Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Protein Eng., Des. Sel. 20, 125–131 (2007)

    Google Scholar 

  31. Bartsch, S., Kourist, R., Bornscheuer, U.T.: Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus Subtilis Esterase. Angew. Chem. Int. Ed . 47, 1508–1511 (2008)

    Google Scholar 

  32. Archelas, A., Furstoss, R.: Synthetic applications of epoxide hydrolases. Curr. Opin. Chem. Biol. 5, 112–119 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Cedrone, F., Niel, S., Roca, S., Bhatnagar, T., Ait-abdelkader, N., Torre, C., Krumm, H., Maichele, A., Reetz, M.T., Baratti, J.C.: Directed evolution of the epoxide hydrolase from aspergillus niger. Biocatal. Biotransform. 21, 357–364 (2003)

    Article  CAS  Google Scholar 

  34. Reetz, M.T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., Maichele, A., Bocola, M., Arand, M., Cronin, A., Genzel, Y., Archelas, A., Furstoss, R.: Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org. Lett. 6, 177–180 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Reetz, M.T., Bocola, M., Wang, L.-W., Sanchis, J., Cronin, A., Arand, M., Zou, J., Archelas, A., Bottalla, A.-L., Naworyta, A., Mowbray, S.L.: Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc. 131, 7334–7343 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Bornscheuer, U.T.: Trends and challenges in enzyme technology. Adv. Biochem. Eng. Biotechnol. 100, 181–203 (2005)

    CAS  PubMed  Google Scholar 

  37. Elenkov, M.M., Tang, L., Hauer, B., Janssen, D.B.: Sequential kinetic resolution catalyzed by halohydrin dehalogenase. Org. Lett. 8, 4227–4229 (2006)

    Article  CAS  Google Scholar 

  38. Bougioukou, D.J., Kille, S., Taglieber, A., Reetz, M.T.: Directed evolution of an enantioselective enoate-reductase: testing the utility of iterative saturation mutagenesis. Adv. Synth. Catal. 351, 3287–3305 (2009)

    Article  CAS  Google Scholar 

  39. Strukul, G.: Transition metal catalysis in the Baeyer-Villiger oxidation of ketones. Angew. Chem. Int. Ed. 37, 1198–1209 (1998)

    Article  Google Scholar 

  40. Bolm, C., Schlingloff, G., Weickhardt, K.: Optically active lactones from a Baeyer–Villiger-type metal-catalyzed oxidation with molecular oxygen. Angew. Chem. Int. Ed. Engl. 33, 1848–1849 (1994)

    Article  Google Scholar 

  41. Mihovilovic, M.D., Muller, B., Stanetty, P.: Monooxygenase-mediated Baeyer−Villiger Oxidations. Eur. J. Org. Chem. 3711–3730 (2002)

    Google Scholar 

  42. Taschner, M.J., Black, D.J.: The enzymatic Baeyer-Villiger oxidation: enantioselective synthesis of lactones from mesomeric cyclohexanones. J. Am. Chem. Soc. 110, 6892–6893 (1988)

    Article  CAS  Google Scholar 

  43. Alphand, V., Furstoss, R., Pedragosa-Moreau, S., Roberts, S.M., Willetts, A.J.: Comparison of microbiologically and enzymatically mediated Baeyer-Villiger oxidations: synthesis of optically active caprolactones. J. Chem. Soc. Perkin Trans. 1, 1867–1872 (1996)

    Article  Google Scholar 

  44. DeSantis, G., Wong, K., Farwell, B., Chatman, K., Zhu, Z., Tomlinson, G., Huang, H., Tan, X., Bibbs, L., Chen, P., Kretz, K., Burk, M.J.: Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc. 125, 11476–11477 (2003)

    Google Scholar 

  45. Peters, M.W., Meinhold, P., Glieder, A., Arnold, F.H.: Regio-and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125, 13442–13450 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Reetz, M.T., Brunner, B., Schneider, T., Schulz, F., Clouthier, C.M., Kayser, M.M.: Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in baeyer–villiger reactions. Angew. Chem., Int. Ed. 43, 4075–4078 (2004)

    Google Scholar 

  47. Drauz, K., Waldmann, H.: In: Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, vol. I-III, 2nd ed., VCH, Weinheim (2002)

    Google Scholar 

  48. (a) Asako, H., Shimizu, M., Makino, Y., Itoh, N.: Biocatalytic reduction system for the production of chiral methyl (R)/(S)-4-bromo-3-hydroxybutyrate. Tetrahedron Lett. 51, 2664–2666 (2010). (b) Asako, H., Shimizu, M., Itoh, N.: Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity. Appl. Microbiol. Biotechnol. 80, 805–812 (2008)

    Google Scholar 

  49. Campapiano, O.: WO-2009046153-A1—ketoreductase polypeptides for the production of azetidinone. Chem. Abstr. 150, 416448 (2009)

    Google Scholar 

  50. Reetz, M.T., Daligault, F., Brunner, B., Hinrichs, H., Deege, A.: Directed evolution of cyclohexanone monooxygenases: enantioselective biocatalysts for the oxidation of prochiral thioethers. Angew. Chem., Int. Ed. 43, 4078–4081 (2004)

    Google Scholar 

  51. Feingersch, R., Shainsky, J., Wood, T.K., Fishman, A.: Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides. Appl. Environ. Microbiol. 74, 1555–1566 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer, A., W€ursten, M., Schmid, A., Kohler, H.-P.E., Witholt, B.: Hydroxylation of indole by laboratory-evolved 2-Hydroxybiphenyl 3-Monooxygenase. J. Biol. Chem. 277, 34161–34167 (2002)

    Google Scholar 

  53. Meyer, A., Schmid, A., Held, M., Westphal, A.H., R€othlisberger, M., Kohler, H.-P.E., Van Berkel, W.J.H., Witholt, B.: Changing the substrate reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica HBP1 by directed evolution. J. Biol. Chem. 277, 5575–5582 (2002)

    Google Scholar 

  54. Gillam, E.M.J.: Engineering cytochrome P450 enzymes. Chem. Res. Toxicol. 21, 220–231 (2008)

    Article  PubMed  Google Scholar 

  55. Farinas, E.T., Schwaneberg, U., Glieder, A., Arnold, F.H.: Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv. Synth. Catal. 343, 601–606 (2001)

    Article  CAS  Google Scholar 

  56. Glieder, A., Farinas, E.T., Arnold, F.H.: Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20, 1135–1139 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. M€unzer, D.F., Meinhold, P., Peters, M.W., Feichtenhofer, S., Griengl, H., Arnold, F.H., Glieder, A., de Raadt, A.: Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3. Chem. Commun. 20, 2597–2599 (2005)

    Google Scholar 

  58. Urlacher, V.B., Makhsumkhanov, A., Schmid, R.D.: Biotransformation of β-ionone by engineered cytochrome P450 BM-3. Appl. Microbiol. Biotechnol. 70, 53–59 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. Furlemmeier, A., Quitt, P., Vogler, K., Lanz, P.: 6-Acyl derivatives of amminopencillanic acid. U.S. Patent 3, 957, 758 (1976)

    Google Scholar 

  60. Campbell, R.F., Fitzpatrick, K., Inghardt, T., Karlsson, O., Nilsson, K., Reilly, J.E., Yet L.: Enzymatic resolution of substituted mandelic acids. Tetrahedron Lett. 44, 5477–5481 (2003)

    Google Scholar 

  61. Landwehr, M., Hochrein, L., Otey, C.R., Kasrayan, A., Backvall, J.-E., Arnold, F.H.: Enantioselective α-Hydroxylation of 2-Arylacetic Acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. J. Am. Chem. Soc. 128, 6058–6059 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. England, P.A., Harford-Cross, C.F., Stevenson, J.-A., Rouch, D.A., Wong, L.-L.: The oxidation of naphthalene and pyrene by cytochrome P450cam. FEBS Lett. 424, 271–274 (1998)

    Google Scholar 

  63. Kubo, T., Peters, M.W., Meinhold, P., Arnold, F.H.: Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3. Chem. Eur. J. 12, 1216–1220 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. Molnar, I., Jungmann, V., Stege, J.T., Trefzer, A., Pachlatko, J.P.: Biocatalytic conversion of avermectin into 4″-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochem. Soc. Trans. 34, 1236–1240 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. Trefzer, A., Jungmann, V., Molnar, I., Botejue, A., Buckel, D., Frey, G., Hill, D.S., J€org, M., Ligon, J.M., Mason, D., Moore, D., Pachlatko, J.P., Richardson, T.H., Spangenberg, P., Wall, M.A., Zirkle, R., Stege, J.T.: Biocatalytic conversion of avermectin to 4″-Oxo-Avermectin: improvement of cytochrome P450 monooxygenase specificity by directed evolution. Appl. Environ. Microbiol. 73, 4317 (2007)

    Google Scholar 

  66. Bell, S.G., Sowden, R.J., Wong, L.-L.: Engineering the haem monooxygenase cytochrome P450cam for monoterpene oxidation. Chem. Commun. 7, 635–636 (2001)

    Article  Google Scholar 

  67. Strieker, M., Essen, L.O., Walsh, C.T., Marahiel, M.A.: Non-heme hydroxylase engineering for simple enzymatic synthesis of L-threo-hydroxyaspartic acid. ChemBioChem 9, 374–376 (2008)

    Article  CAS  PubMed  Google Scholar 

  68. Urlacher, V.B., Schmid, R.D.: Recent advances in oxygenase-catalyzed biotransformations. Curr. Opin. Chem. Biol. 10, 156–161 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. Keenan, B.G., Leungsakul, T., Smets, B.F., Mori, M., Henderson, D.E., Wood, T.K.: Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. Strain U2 for activity on Aminonitrotoluenes and Dinitrotoluenes through alpha-subunit residues Leucine 225, Phenylalanine 350, and Glycine 407. J. Bacteriol. 187, 3302–3310 (2005)

    Google Scholar 

  70. May, O., Nguyen, P.T., Arnold, F.H.: Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat. Biotechnol. 18, 317–320 (2000)

    Article  CAS  PubMed  Google Scholar 

  71. DeSantis, G., Wong, K., Farwell, B., Chatman, K., Zhu, Z., Tomlinson, G., Huang, H., Tan, X., Bibbs, L., Chen, P., Kretz, K., Burk, M.J.: Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc. 125, 11476–11477 (2003)

    Article  CAS  PubMed  Google Scholar 

  72. Arroyo, M., de la Mata, I., Hormigo, D., Castillon, M.P., Acebal, C.: Production and characterization of microbial β-lactam acylases. In: Mellado, E., Barredo, J.L. (eds.) Microorganisms for Industrial Enzymes and Biocontrol. Research Signpost, Trivandrum, pp 129–151. (2005)

    Google Scholar 

  73. Lopez-Gallego, F., Betancor, L., Sio, C.F., Reis, C.R., Jimenez, P.N., Guisan, J.M., Quax, W.J., Fernandez-Lafuente, R.: Adv. Synth. Catal. 350, 343–348 (2008)

    Article  CAS  Google Scholar 

  74. (a) Pollegioni, L., Lorenzi, S., Rosini, E., Marcone, G.L., Molla, G., Verga, R., Cabri, W., Pilone, M.S.: Evolution of an acylase active on cephalosporin C. Protein Sci. 14, 3064–3076 (2005). (b) Sylvestre, J., Chautard, H, Cedrone, F., Delcourt, M.: Directed evolution of biocatalysts. Org. Process Res. Dev. 10, 562–571 (2006)

    Google Scholar 

  75. Suzuki, H., Yamada, C., Kijima, K., Ishihara, S., Wada, K., Fukuyama, K., Kumagai, H.: Enhancement of glutaryl-7-aminocephalosporanic acid acylase activity of γ-glutamyltranspeptidase of Bacillus subtilis. Biotechnol. J. 5, 829–837 (2010)

    Article  CAS  PubMed  Google Scholar 

  76. Tripathi, R.P., Verma, S.S., Pandey, J., Tiwari, V.K.: Recent development on catalytic reductive amination and applications. Curr. Org. Chem. 12, 1093–1115 (2008)

    Article  CAS  Google Scholar 

  77. Lalonde, J.: Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis. Curr. Opin. Biotechnol. 42, 152–158 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Ghislieri, D., Turner, N.J.: Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top. Catal. 57, 284–300 (2014)

    Article  CAS  Google Scholar 

  79. Wang, D.-H., Chen, Q., Yin, S.-N., Ding, X.-W., Zheng, Y.-C., Zhang, Z., Zhang, Y.-H., Chen, F.-F., Xu, J.-H., Zheng, G.-W.: Asymmetric reductive amination of structurally diverse ketones with ammonia using a spectrum-extended amine dehydrogenase. ACS Catal. 11, 14274–14283 (2021)

    Article  CAS  Google Scholar 

  80. Liu, Z., Calvo-Tusell, C., Zhou, A.Z., Chen, K., Garcia-Borras, M., Arnold, F.H.: Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nature Commun. 13, 1166–1172 (2021)

    CAS  Google Scholar 

  81. Sharma, V.K., Watts, J.K.: Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med. Chem. 7, 2221–2242 (2015)

    Article  CAS  PubMed  Google Scholar 

  82. Sharma, V.K., Rungta, P., Prasad, A.K.: Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv. 4, 16618–16631 (2014)

    Article  CAS  Google Scholar 

  83. Sharma, V.K., Kumar, M., Olsen, C.E., Prasad, A.K.: Chemoenzymatic convergent synthesis of 2′-O,4′-C-Methyleneribonucleosides. J. Org. Chem. 79, 6336–6341 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. Sharma, V.K., Kumar, M., Sharma, D., Olsen, C.E., Prasad, A.K.: Chemoenzymatic convergent synthesis of 2′-O,4′-C-Methyleneribonucleosides. J. Org. Chem. 79, 8516–8521 (2014)

    Article  CAS  PubMed  Google Scholar 

  85. Isita, J., Meier, J.L.: Enzymatic catalysts to combat COVID-19. ACS Cent. Sci. 7, 1963–1965 (2021)

    Article  CAS  Google Scholar 

  86. Kotik, M., Brodsky, K., Halada, P., Javurkova, H., Pelantova, H., Konvalinkova, D., Bojarova, P., Kren, N.: Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. Catalysis Commun. 149, 106193 (2021)

    Article  CAS  Google Scholar 

  87. Gorantla, J.N., Pengthaisong, S., Choknud, S., Kaewpuang, T., Manyum, T., Promarakb, V., Cairns, J.R.K.: Gram scale production of 1-Azido-b-D-Glucose via enzyme catalysis for the synthesis of 1,2,3-Triazole Glucosides. RSC Adv. 9, 6211–6220 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tiwari, V.K.: In: Carbohydrates in Drug Discovery and Development. Elsevier (2020)

    Google Scholar 

  89. Nielsen, M.M., Pedersen, C.M.: Catalytic glycosylations in oligosaccharide synthesis. Chem. Rev. 118, 8285–8358 (2018)

    Article  CAS  PubMed  Google Scholar 

  90. Shoda, S., Uyama, H., Kadokawa, J., Kimura, S., Kobayashi, S.: Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 116, 2307–2413 (2016)

    Article  CAS  PubMed  Google Scholar 

  91. Shoda, S.: Development of chemical and chemo-enzymatic glycosylations. Proc. Jpn. Acad., Ser. B. 93, 125–145 (2017)

    Google Scholar 

  92. Loos, K.,Kadokawa, J., Kobayashi, S., Uyama, H.: In: Enzymatic Polymerization towards Green Polymer Chemistry, pp. 47–87. Springer, Heidelberg (2019)

    Google Scholar 

  93. O’Neill, E.C., Field, R.A.: Enzymatic synthesis using glycoside phosphorylases. Carbohydr. Res. 403, 23–37 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kadokawa, J.-I., Lee, L.H., Yamamoto, K.: Thermostable α-Glucan Phosphorylase-catalyzed Enzymatic chain-elongation to produce 6-Deoxygenated α(1→4)-Oligoglucans. Curr. Org. Chem. 25, 1345–1352 (2021)

    Article  CAS  Google Scholar 

  95. Park, S., Kazlauskas, R.J.: Biocatalysis in ionic liquids: advantageous beyond green technology. Curr. Opin. Biotech. 14, 432–437 (2003)

    Article  CAS  PubMed  Google Scholar 

  96. Qiao, Y., Ma, W., Theyssen, N., Chen, C., Hou, Z.: Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 117, 6881–6928 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. Egorova, K.S., Gordeev, E.G., Ananikov, V.P.: Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117, 7132–7189 (2017)

    Article  CAS  PubMed  Google Scholar 

  98. Rajkhowa, S., Kale, R.R., Sarma, J., Kumar, A., Mohapatra, P.P., Tiwari, V.K.: Room temperature ionic liquids in glycoscience: opportunities and challenges. Curr. Org. Chem. 25, 2542–2578 (2021)

    Article  CAS  Google Scholar 

  99. Murugesan, S., Linhardt, R.J.: Ionic liquids in carbohydrate chemistry—current trends and future directions. Curr. Org. Syn. 2, 437–451 (2005)

    Article  CAS  Google Scholar 

  100. Farraan, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernaaiz, M.J., Linhardt, R.J.: Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev. 115, 6811–6853 (2015)

    Article  CAS  Google Scholar 

  101. Park, S., Kazlauskas, R.J.: Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J. Org. Chem. 66, 8395–8401 (2001)

    Article  CAS  PubMed  Google Scholar 

  102. Murugesan, S., Karst, N., Islam, T., Wiencek, J.M., Linhardt, R.J.: Dialkyl imidazolium benzoates- room temperature ionic liquids useful in the peracetylation and perbenzoylation of simple and sulfated saccharides. Synlett 9, 1283–1286 (2003)

    Google Scholar 

  103. Kim, M.J., Choi, M.Y., Lee, J.K., Ahn, Y.: Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J. Mol. Catal. B: Enzymatic 26, 115–118 (2003)

    Article  CAS  Google Scholar 

  104. Ganske, F., Bornscheuer, U.T.: Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org. Lett. 7, 3097–3098 (2005)

    Article  CAS  PubMed  Google Scholar 

  105. Kaftzik, N., Wasserscheid, P., Kragl, U.: Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-Acetyllactosamine. Org. Proc. Res. Devlop. 6, 553–557 (2002)

    Article  CAS  Google Scholar 

  106. Winter, K.D., Verlindena, K., Krenb, V., Weignerovab, L., Soetaerta, W., Tom, D.: Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability. Green Chem. 15, 1949–1955 (2013)

    Article  CAS  Google Scholar 

  107. Holbrey, J.D., Turner, M.B., Reichert, W.M., Rogers, R.D.: New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem. 5, 731–736 (2003)

    Article  CAS  Google Scholar 

  108. Turner, M.B., Spear, S.K., Huddleston, J.G., Holdbrey, J.D., Rogers, R.D.: Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem. 5, 443–447 (2003)

    Article  CAS  Google Scholar 

  109. Okrasa, K., Guibe-Jampel, E., Therisod, M.: Tandem peroxidase-glucose oxidase catalysed enantioselective sulfoxidation of thioanisoles. J. Chem Soc. Perkin Trans-1 7, 1077–1079 (2000)

    Google Scholar 

  110. Brovetto, M., Gamenara, D., Méndez, P.S., Seoane, G.A.: C−C bond-forming lyases in organic synthesis. Chem. Rev. 111, 4346–4403 (2011)

    Article  CAS  PubMed  Google Scholar 

  111. Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., Shimizu, S.: Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51, 486–490 (1999)

    Article  CAS  PubMed  Google Scholar 

  112. Fong, S., Machajewski, T.D., Mak, C.C., Wong, C.-H.: Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D-and L-sugars. Chem. Biol. 7, 873–883 (2000)

    Article  CAS  PubMed  Google Scholar 

  113. Royer, S.F., Haslett, L., Crennell, S.J., Hough, D.W., Danson, M.J., Bull, S.D.: Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts. J. Am. Chem. Soc. 132, 11753–11758 (2010)

    Article  CAS  PubMed  Google Scholar 

  114. Gonzalez-Garcia, E., Helaine, V., Klein, G., Schuermann, M., Sprenger, G.A., Fessner, W.-D., Reymond, J.-L.: Fluorogenic stereochemical probes for transaldolases. Chem. Eur. J. 9, 893–899 (2003)

    Article  CAS  PubMed  Google Scholar 

  115. Sugiyama, M., Greenberg, W., Wong, C.-H.: Recent advances in aldolase-catalyzed synthesis of unnatural sugars and iminocyclitols. J. Syn. Org. Chem., Japan. 66, 605–615 (2008)

    Google Scholar 

  116. Wada, M., Hsu, C.-C., Franke, D., Mitchell, M., Heine, A., Wilson, I., Wong, C.-H.: Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions. Bioorg. Med. Chem. 11, 2091–2098 (2003)

    Article  CAS  PubMed  Google Scholar 

  117. Woodhall, T., Williams, G.J., Berry, A., Nelson, A.: Creation of a tailored aldolase for the parallel synthesis of sialic acid mimetics. Angew. Chem. Int. Ed. 44, 2109–2112 (2005)

    Article  CAS  Google Scholar 

  118. Hsu, C.-C., Hong, Z., Wada, M., Franke, D., Wong, C.-H.: Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (l-KDO) aldolase. Proc. Natl. Acad. Sci. U.S.A. 102, 9122–9126 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Williams, G.J., Domann, S., Nelson, A., Berry, A.: Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proc. Natl. Acad. Sci. U.S.A. 100, 3143–3148 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yu, H., Chen, X.: One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org. Biomol. Chem. 14, 2809–2818 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Knorst, M., Fessner, W.-D.: CMP-sialate synthetase from neisseria meningitidis—overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Syn. Cat. 343, 698–710 (2001)

    Article  CAS  Google Scholar 

  122. Blix, G., Gottschalk, A., Klenk, E.: Proposed nomenclature in the field of neuraminic and sialic acids. Nature 179, 1088 (1957)

    Article  CAS  PubMed  Google Scholar 

  123. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  124. Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)

    Article  CAS  PubMed  Google Scholar 

  125. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related α-Keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002)

    Article  CAS  PubMed  Google Scholar 

  126. Honke, K., Taniguchi, N.: Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev. 22, 637–654 (2002)

    Article  CAS  PubMed  Google Scholar 

  127. Bose, P., Agrahari, A.K., Singh, A.S., Tiwari, V.K., Jaiswal, M.K.: Sialic acids in drug discovery and development. In: Tiwari, V.K. (ed) Carbohydrates in Drug Discovery and development, pp. 213–266. Elsevier, The Netherlands (2020)

    Google Scholar 

  128. Chen, X., Varki, A.: Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5, 163–176 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Y., Yu, H., Cao, H., Lau, K., Muthana, S., Tiwari, V.K., Son, B., Chen, X.: Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl. Microb. Biotech. 79, 963–970 (2008)

    Article  CAS  Google Scholar 

  130. Yu, H., Cao, H., Tiwari, V.K., Li, Y., Chen, X.: Chemoenzymatic synthesis of C8-modified sialic acids and related α2–3- and α2–6-linked sialosides. Bio. Org. Med. Chem. Lett. 21, 5037–5040 (2011)

    Article  CAS  Google Scholar 

  131. Huynh, N., Aye, A., Li, Y., Yu, H., Cao, H., Tiwari, V.K., Shin, D.-W., Chen, X., Fisher, A.J.: Structural basis for substrate specificity and mechanism of N-Acetyl-d-neuraminic acid lyase from Pasteurella multocida. Biochemistry 52, 8570–8579 (2013)

    Article  CAS  PubMed  Google Scholar 

  132. Yu, H., Yu, H., Karpel, R., Chen, X.: Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem. 12, 6427–6435 (2004)

    Article  CAS  PubMed  Google Scholar 

  133. Yu, H., Chokhawala, H., Karpel, R., Yu, H., Wu, B., Zhang, J., Zhang, Y., Jia, Q., Chen, X.: A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005)

    Article  CAS  PubMed  Google Scholar 

  134. Ding, L., Yu, H., Lau, K., Li, Y., Muthana, S., Wang, J., Chen, X.: Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem Commun. 47, 8691–8693 (2011)

    Article  CAS  Google Scholar 

  135. Kooner, A.S., Yu, H., Chen, X.: Synthesis of N-Glycolylneuraminic acid (Neu5Gc) and its glycosides. Front. Immunol. 2019, 10 (2004). https://doi.org/10.3389/fimmu.2019.02004

    Article  CAS  Google Scholar 

  136. Huang, S., Yu, H., Chen, X.: Disaccharides as sialic acid aldolase substrates: synthesis of disaccharides containing a sialic acid at the reducing end. Angew. Chem. Int. Ed. 46, 2249–2253 (2007)

    Article  CAS  Google Scholar 

  137. Chokhawala, H.A., Cao, H., Yu, H., Chen, X.: Enzymatic synthesis of fluorinated mechanistic probes for sialidases and sialyltransferases. J. Am. Chem. Soc. 129, 10630–10631 (2007)

    Article  CAS  PubMed  Google Scholar 

  138. Yu, H., Chokhawala, H.A., Huang, S., Chen, X.: One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nature protocol 1, 2485–2492 (2006)

    Article  CAS  Google Scholar 

  139. Yu, H., Huang, S., Chokhawala, H., Sun, M., Zheng, H., Chen, X.: Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α-2,6-linked sialosides: a P. damsela α-2,6-Sialyltransferase with Extremely Flexible Donor–Substrate Specificity. Angew. Chem. Int. Ed. 45, 3938–3944 (2006)

    Google Scholar 

  140. Cheng, J., Yu, H., Lau, K., Huang, S., Chokhawala, H.A., Li, Y., Tiwari, V.K., Chen, X.: Multifunctionality of Campylobacter jejunisialyltransferaseCstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 18, 686–697 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiao, A., Li, Y., Li, X., Santra, A., Yu, H., Li, W., Chen, X.: Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal. 8, 43–47 (2018)

    Article  PubMed  CAS  Google Scholar 

  142. Yu, H., Cheng, J., Ding, L., Khedri, Z., Chen, Y., Lau, K., Tiwari, V.K.: Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. Chen, X. J. Am. Chem. Soc. 131, 18467–18477 (2009)

    Google Scholar 

  143. Song, X., Yu, H., Chen, X., Lasanajak, Y., Tappert, M.M., Air, G.M., Tiwari, V.K., Cao, H., Chokhawala, H.A., Zheng, H., Cummings, R.D., Smith, D.F.: A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 286, 31610–31622 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kooner, A.S., Diaz, S., Yu, H., Santra, A., Varki, A., Chen, X.: Chemoenzymatic synthesis of sialosides containing 7-N- or 7,9-Di-N-acetyl sialic acid as stable O-Acetyl analogues for probing sialic acid-binding proteins. J. Org. Chem. 86, 14381–14397 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Tiwari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, V.K., Kumar, A., Rajkhowa, S., Tripathi, G., Singh, A.K. (2022). Enzymes in Organic Synthesis. In: Green Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2734-8_8

Download citation

Publish with us

Policies and ethics