Skip to main content

Green Solvents: Application in Organic Synthesis

  • Chapter
  • First Online:
Green Chemistry

Abstract

Solvents play very important role in a chemical reaction by providing a medium to solubilize the reacting components, reagents and also facilitate mass and heat transfer processes. It also affects the reaction kinetics and the stability of various reacting species and intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichardt, C.: Solvents and solvent effects: an introduction. Org. Process Res. Dev. 11(1), 105–113 (2007)

    Article  CAS  Google Scholar 

  2. Sheldon, R.A.: The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19(1), 18–43 (2017)

    Article  CAS  Google Scholar 

  3. Rodríguez, B., Rantanen, T., Bolm, C.: Solvent-free asymmetric organocatalysis in a ball mill. Angew. Chemie 118(41), 7078–7080 (2006)

    Article  Google Scholar 

  4. Tripathi, G., Kumar, A., Rajkhowa, S., Tiwari, V.K.: Synthesis of biologically relevant heterocyclic skeletons under solvent-free condition. In: Green Synthetic Approaches for Biologically Relevant Heterocycles, pp. 421–459. Elsevier (2021)

    Google Scholar 

  5. Tobiszewski, M., Namieśnik, J., Pena-Pereira, F.: Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem. 19(4), 1034–1042 (2017)

    Article  CAS  Google Scholar 

  6. Simon, M.-O., Li, C.-J.: Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 41(4), 1415–1427 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. Clark, J.H., Farmer, T.J., Hunt, A.J., Sherwood, J.: Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci. 16(8), 17101–17159 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheldon, R.A.: Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7(5), 267–278 (2005)

    Article  CAS  Google Scholar 

  9. Yilmaz, E., Soylak, M.: Type of green solvents used in separation and preconcentration methods. In: New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species (2020). https://doi.org/10.1016/b978-0-12-818569-8.00005-x

  10. Sathish, M., Silambarasan, S., Madhan, B., Rao, J.R.: Exploration of GSK’s solvent selection guide in leather industry: a CSIR-CLRI tool for sustainable leather manufacturing. Green Chem. 18(21), 5806–5813 (2016)

    Article  CAS  Google Scholar 

  11. Alder, C.M., Hayler, J.D., Henderson, R.K., Redman, A.M., Shukla, L., Shuster, L.E., Sneddon, H.F.: Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18(13), 3879–3890 (2016)

    Article  CAS  Google Scholar 

  12. Prat, D., Pardigon, O., Flemming, H.-W., Letestu, S., Ducandas, V., Isnard, P., Guntrum, E., Senac, T., Ruisseau, S., Cruciani, P.: Sanofi’s solvent selection guide: a step toward more sustainable processes. Org. Process Res. Dev. 17(12), 1517–1525 (2013)

    Article  CAS  Google Scholar 

  13. Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., McElroy, C.R., Sherwood, J.: Tools and techniques for solvent selection: green solvent selection guides. Sustain. Chem. Process 4(1), 1–24 (2016)

    Article  CAS  Google Scholar 

  14. Bembenic, M.A.H., Clifford, C.E.B.: Subcritical water reactions of a hardwood derived organosolv lignin with nitrogen, hydrogen, carbon monoxide, and carbon dioxide gases. Energ. Fuels 26(7), 4540–4549 (2012)

    Article  CAS  Google Scholar 

  15. Avola, S., Goettmann, F., Antonietti, M., Kunz, W.: Organic reactivity of alcohols in superheated aqueous salt solutions: an overview. New J. Chem. 36(8), 1568–1573 (2012)

    Article  CAS  Google Scholar 

  16. Rideout, D.C., Breslow, R.: Hydrophobic acceleration of diels-alder reactions. J. Am. Chem. Soc. 102(26), 7816–7817 (1980)

    Article  CAS  Google Scholar 

  17. Chao-Jun Li, L.C.: Organic chemistry in water. Chem. Soc. Rev. 35, 68–82 (2006)

    Article  PubMed  Google Scholar 

  18. Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V., Kolb, H.C., Sharpless, K.B.: “On Water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chemie Int. Ed. 44(21), 3275–3279 (2005)

    Article  CAS  Google Scholar 

  19. Yorimitsu, H., Nakamura, T., Shinokubo, H., Oshima, K., Omoto, K., Fujimoto, H.: Powerful solvent effect of water in radical reaction: triethylborane-induced atom-transfer radical cyclization in water. J. Am. Chem. Soc. 122(45), 11041–11047 (2000)

    Article  CAS  Google Scholar 

  20. Huang, T., Meng, Y., Venkatraman, S., Wang, D., Li, C.-J.: Remarkable electronic effect on rhodium-catalyzed carbonyl additions and conjugated additions with arylmetallic reagents. J. Am. Chem. Soc. 123(30), 7451–7452 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Keh, C.C.K., Wei, C., Li, C.-J.: The Barbier−Grignard-type carbonyl alkylation using unactivated alkyl halides in water. J. Am. Chem. Soc. 125(14), 4062–4063 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, S.: Lanthanide trifluoromethanesulfonates as stable Lewis acids in aqueous media. Yb(OTf)3 catalyzed hydroxymethylation reaction of silyl enol ethers with commercial formaldehyde solution. Chem. Lett. 20(12), 2187–2190 (1991)

    Google Scholar 

  23. Wei, C., Li, C.-J.: Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper (I) pybox complex in water and in toluene. J. Am. Chem. Soc. 124(20), 5638–5639 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. ten Brink, G.-J., Arends, I.W.C.E., Sheldon, R.A.: Green, catalytic oxidation of alcohols in water. Science 287(5458), 1636–1639 (2000)

    Article  PubMed  Google Scholar 

  25. Uozumi, Y., Nakao, R.: Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst. Angew. Chemie 115(2), 204–207 (2003)

    Article  Google Scholar 

  26. Noyori, R., Aoki, M., Sato, K.: Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 16, 1977–1986 (2003)

    Article  CAS  Google Scholar 

  27. Sloboda-Rozner, D., Alsters, P.L., Neumann, R.: A water-soluble and “self-assembled” polyoxometalate as a recyclable catalyst for oxidation of alcohols in water with hydrogen peroxide. J. Am. Chem. Soc. 125(18), 5280–5281 (2003)

    Article  PubMed  Google Scholar 

  28. Rodrigues, F., Canac, Y., Lubineau, A.: A convenient, one-step, synthesis of β-C-glycosidic ketones in aqueous media. Chem. Commun. 20, 2049–2050 (2000)

    Article  Google Scholar 

  29. Welton, T.: Ionic liquids: a brief history. Biophys. Rev. 10(3), 691–706 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keskin, S., Kayrak-Talay, D., Akman, U., Hortaçsu, Ö.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43(1), 150–180 (2007)

    Article  CAS  Google Scholar 

  31. Jessop, P.G.: Searching for green solvents. Green Chem. 13(6), 1391–1398 (2011)

    Article  CAS  Google Scholar 

  32. Keskin, S., Kayrak-Talay, D., Akman, U., Hortaçsu, O.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150–180 (2007)

    Article  CAS  Google Scholar 

  33. Yang, B., Zhang, Q., Fei, Y., Zhou, F., Wang, P., Deng, Y.: Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption. Green Chem. 17(7), 3798–3805 (2015)

    Article  CAS  Google Scholar 

  34. Eilmes, A., Kubisiak, P.: Quantum-chemical and molecular dynamics study of M+[TOTO] (M = Li, Na, K) ionic liquids. J. Phys. Chem. B 117(41), 12583–12592 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Plaumann, H.: Switchable polarity solvents: are they green? Phys. Sci. Rev. 2(3), 27–30 (2017)

    Google Scholar 

  36. Phan, L., Brown, H., White, J., Hodgson, A., Jessop, P.G.: Soybean oil extraction and separation using switchable or expanded solvents. Green Chem. 11(1), 53–59 (2009)

    Article  CAS  Google Scholar 

  37. Vanderveen, J.R., Durelle, J., Jessop, P.G.: Design and evaluation of switchable-hydrophilicity solvents. Green Chem. 16(3), 1187–1197 (2014)

    Article  CAS  Google Scholar 

  38. Peach, J., Eastoe, J.: Supercritical carbon dioxide: a solvent like no other. Beilstein J. Org. Chem. 10(1), 1878–1895 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. De Marco, I., Riemma, S., Iannone, R.: Supercritical carbon dioxide decaffeination process: a life cycle assessment study. Chem. Eng. Trans. 57, 1699–1704 (2017)

    Google Scholar 

  40. Pinelo, M., Ruiz-Rodríguez, A., Sineiro, J., Señoráns, F.J., Reglero, G., Núñez, M.J.: Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. Eur. Food Res. Technol. 226(1), 199–205 (2007)

    Article  CAS  Google Scholar 

  41. Villanueva Bermejo, D., Angelov, I., Vicente, G., Stateva, R.P., Rodriguez García-Risco, M., Reglero, G., Ibañez, E., Fornari, T.: Extraction of thymol from different varieties of thyme plants using green solvents. J. Sci. Food Agric. 95(14), 2901–2907 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Lu, Y., Mu, B., Zhu, B., Wu, K., Gou, Z., Li, L., Cui, L., Liang, N.: Comparison of supercritical fluid extraction and liquid solvent extraction on antitumor diterpenoid from Pteris semipinnata L.. Sep. Sci. Technol. 47(16), 2436–2443 (2012)

    CAS  Google Scholar 

  43. Jessop, P.G., Ikariya, T., Noyori, R.: Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 368(6468), 231–233 (1994)

    Article  CAS  Google Scholar 

  44. Jessop, P.G., Hsiao, Y., Ikariya, T., Noyori, R.: Catalytic production of dimethylformamide from supercritical carbon dioxide. J. Am. Chem. Soc. 116(19), 8851–8852 (1994)

    Article  CAS  Google Scholar 

  45. Jessop, P.G., Hsiao, Y., Ikariya, T., Noyori, R.: Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J. Am. Chem. Soc. 118(2), 344–355 (1996)

    Article  CAS  Google Scholar 

  46. Burk, M.J., Feng, S., Gross, M.F., Tumas, W.: Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J. Am. Chem. Soc. 117(31), 8277–8278 (1995)

    Article  CAS  Google Scholar 

  47. Xiao, J., Nefkens, S.C.A., Jessop, P.G., Ikariya, T., Noyori, R.: Asymmetric hydrogenation of α,β-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett. 37(16), 2813–2816 (1996)

    Article  CAS  Google Scholar 

  48. Hu, Y., Birdsall, D.J., Stuart, A.M., Hope, E.G., Xiao, J.: Ruthenium-catalysed asymmetric hydrogenation with fluoroalkylated binap ligands in supercritical CO2. J. Mol. Catal. A Chem. 219(1), 57–60 (2004)

    Article  CAS  Google Scholar 

  49. Lyubimov, S.E., Rastorguev, E.A., Petrovskii, P.V., Kelbysheva, E.S., Loim, N.M., Davankov, V.A.: Iridium-catalyzed asymmetric hydrogenation of imines in supercritical carbon dioxide using phosphite-type ligands. Tetrahedron Lett. 52(12), 1395–1397 (2011)

    Article  CAS  Google Scholar 

  50. Berthod, M., Mignani, G., Lemaire, M.: New perfluoroalkylated BINAP usable as a ligand in homogeneous and supercritical carbon dioxide asymmetric hydrogenation. Tetrahedron Asym. 15(7), 1121–1126 (2004)

    Google Scholar 

  51. Gava, R., Olmos, A., Noverges, B., Varea, T., Álvarez, E., Belderrain, T.R., Caballero, A., Asensio, G., Pérez, P.J.: Discovering copper for methane C–H bond functionalization. ACS Catal. 5(6), 3726–3730 (2015)

    Article  CAS  Google Scholar 

  52. Zhang, W., He, X., Ren, B., Jiang, Y., Hu, Z.: Cu(OAc)2·H2O—an efficient catalyst for Huisgen-click reaction in supercritical carbon dioxide. Tetrahedron Lett. 56(19), 2472–2475 (2015)

    Article  CAS  Google Scholar 

  53. López-Periago, A.M., Vega, A., Subra, P., Argemí, A., Saurina, J., García-González, C.A., Domingo, C.: Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery. J. Mater. Sci. 43(6), 1939–1947 (2008)

    Article  CAS  Google Scholar 

  54. Liu, X., Coutelier, O., Harrisson, S., Tassaing, T., Marty, J.-D., Destarac, M.: Enhanced solubility of polyvinyl esters in ScCO2 by means of vinyl trifluorobutyrate monomer. ACS Macro Lett. 4(1), 89–93 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. Chakraborty, S., Colón, Y.J., Snurr, R.Q., Nguyen, S.T.: Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis. Chem. Sci. 6(1), 384–389 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. Maleki, H., Durães, L., Portugal, A.: Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. J. Mater. Chem. A 3(4), 1594–1600 (2015)

    Article  CAS  Google Scholar 

  57. Kuang, T.-R., Mi, H.-Y., Fu, D.-J., Jing, X., Chen, B., Mou, W.-J., Peng, X.-F.: Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind. Eng. Chem. Res. 54(2), 758–768 (2015)

    Article  CAS  Google Scholar 

  58. Zhao, J., Liu, Z., Li, H., Hu, W., Zhao, C., Zhao, P., Shi, D.: Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene. Langmuir 31(8), 2576–2583 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. Jiménez, C., Garcia, J., Camarillo, R., Martínez, F., Rincón, J.: Electrochemical CO2 reduction to fuels using Pt/CNT catalysts synthesized in supercritical medium. Energ. Fuels 31(3), 3038–3046 (2017)

    Article  CAS  Google Scholar 

  60. Cid, M.V.F., Van Spronsen, J., Van der Kraan, M., Veugelers, W.J.T., Woerlee, G.F., Witkamp, G.J.: Excellent dye fixation on cotton dyed in supercritical carbon dioxide using fluorotriazine reactive dyes. Green Chem. 7(8), 609–616 (2005)

    Article  CAS  Google Scholar 

  61. Abou Elmaaty, T., Abd El-Aziz, E.: Supercritical carbon dioxide as a green media in textile dyeing: a review. Text. Res. J. 88(10), 1184–1212 (2018)

    Article  CAS  Google Scholar 

  62. Xiao, H., Zhao, T., Li, C.-H., Li, M.-Y.: Eco-friendly approaches for dyeing multiple type of fabrics with cationic reactive dyes. J. Clean. Prod. 165, 1499–1507 (2017)

    Article  CAS  Google Scholar 

  63. Zhang, Y.-Q., Wei, X.-C., Long, J.-J.: Ecofriendly synthesis and application of special disperse reactive dyes in waterless coloration of wool with supercritical carbon dioxide. J. Clean. Prod. 133, 746–756 (2016)

    Article  CAS  Google Scholar 

  64. DeSimone, J.M., Tumas, W.: Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press (2003)

    Google Scholar 

  65. Lee, W., Kuan, W.: Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 10(6), 840–854 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. Beringer, T.I.M., Lucht, W., Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenerg. 3(4), 299–312 (2011)

    Article  CAS  Google Scholar 

  67. Pace, V., Hoyos, P., Castoldi, L., Dominguez de Maria, P., Alcántara, A.R.: 2‐methyltetrahydrofuran (2‐MeTHF): a biomass‐derived solvent with broad application in organic chemistry. ChemSusChem 5(8), 1369–1379 (2012)

    Google Scholar 

  68. Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T.: Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15(3), 550–583 (2013)

    Article  CAS  Google Scholar 

  69. Farrán, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernáiz, M.J., Linhardt, R.J.: Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev. 115(14), 6811–6853 (2015)

    Article  PubMed  CAS  Google Scholar 

  70. Onda, A., Ochi, T., Yanagisawa, K.: Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10, 1033–1037 (2008)

    Article  CAS  Google Scholar 

  71. Ciriminna, R., Lomeli-Rodriguez, M., Cara, P.D., Lopez-Sanchez, J.A., Pagliaro, M.: Limonene: a versatile chemical of the bioeconomy. Chem. Commun. 50(97), 15288–15296 (2014)

    Article  CAS  Google Scholar 

  72. Antonucci, V., Coleman, J., Ferry, J.B., Johnson, N., Mathe, M., Scott, J.P., Xu, J.: Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org. Process Res. Dev. 15(4), 939–941 (2011)

    Article  CAS  Google Scholar 

  73. Liguori, F., Moreno-Marrodan, C., Barbaro, P.: Environmentally friendly synthesis of γ-valerolactone by direct catalytic conversion of renewable sources. ACS Catal. 5(3), 1882–1894 (2015)

    Article  CAS  Google Scholar 

  74. Sherwood, J., Constantinou, A., Moity, L., McElroy, C.R., Farmer, T.J., Duncan, T., Raverty, W., Hunt, A.J., Clark, J.H.: Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 50(68), 9650–9652 (2014)

    Article  CAS  Google Scholar 

  75. Botella, L., Nájera, C.: Controlled mono and double heck reactions in water catalyzed by an oxime-derived palladacycle. Tetrahedron Lett. 45(9), 1833–1836 (2004)

    Article  CAS  Google Scholar 

  76. Sarmah, M., Mondal, M., Bora, U.: Agro-waste extract based solvents: emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect 2(18), 5180–5188 (2017)

    Article  CAS  Google Scholar 

  77. Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.-S., Chemat, F.: Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 22(9), 1474 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  78. Menges, N., Şahin, E.: Metal-and base-free combinatorial reaction for C-acylation of 1,3-diketo compounds in vegetable oil: the effect of natural oil. ACS Sustain. Chem. Eng. 2(2), 226–230 (2014)

    Article  CAS  Google Scholar 

  79. García, J.I., García-Marín, H., Pires, E.: Glycerol based solvents: synthesis, properties and applications. Green Chem. 16(3), 1007–1033 (2014)

    Article  Google Scholar 

  80. Becker, L.C., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Jr., Shank, R.C., Slaga, T.J., Snyder, P.W.: Safety assessment of glycerin as used in cosmetics. Int. J. Toxicol. 38(3), 6S-22S (2019)

    Article  PubMed  Google Scholar 

  81. Gu, Y., Barrault, J., Jerome, F.: Glycerol as an efficient promoting medium for organic reactions. Adv. Synth. Catal. 350(13), 2007–2012 (2008)

    Article  CAS  Google Scholar 

  82. Gu, Y., Jérôme, F.: Glycerol as a sustainable solvent for green chemistry. Green Chem. 12(7), 1127–1138 (2010)

    Article  CAS  Google Scholar 

  83. Li, M., Chen, C., He, F., Gu, Y.: Multicomponent reactions of 1,3-cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal. 352(2–3), 519–530 (2010)

    Article  CAS  Google Scholar 

  84. Tan, J.-N., Li, M., Gu, Y.: Multicomponent reactions of 1,3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chem. 12(5), 908–914 (2010)

    Article  CAS  Google Scholar 

  85. Radatz, C.S., Silva, R.B., Perin, G., Lenardão, E.J., Jacob, R.G., Alves, D.: Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent. Tetrahedron Lett. 52(32), 4132–4136 (2011)

    Article  CAS  Google Scholar 

  86. Kumar, T.A., Devi, B.R., Dubey, P.K.: Simple, facile and complete green synthesis of N-alkyl-2-styrylbenzimidazoles using glycerol and PEG-600 as green solvents. Der. Chem. Sin. 4, 116–121 (2013)

    Google Scholar 

  87. Bachhav, H.M., Bhagat, S.B., Telvekar, V.N.: Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Lett. 52(43), 5697–5701 (2011)

    Article  CAS  Google Scholar 

  88. Wolfson, A., Dlugy, C., Tavor, D., Blumenfeld, J., Shotland, Y.: Baker’s yeast catalyzed asymmetric reduction in glycerol. Tetrahedron Asym. 17(14), 2043–2045 (2006)

    Google Scholar 

  89. Andrade, L.H., Piovan, L., Pasquini, M.D.: Improving the enantioselective bioreduction of aromatic ketones mediated by aspergillus Terreus and Rhizopus Oryzae: The role of glycerol as a co-solvent. Tetrahedron Asym. 20(13), 1521–1525 (2009)

    Google Scholar 

  90. Taketomi, S., Asano, M., Higashi, T., Shoji, M., Sugai, T.: Chemo-enzymatic route for (R)-terbutaline hydrochloride based on microbial asymmetric reduction of a substituted α-chloroacetophenone derivative. J. Mol. Catal. B Enzym. 84, 83–88 (2012)

    Article  CAS  Google Scholar 

  91. Khatri, P.K., Jain, S.L.: Glycerol ingrained copper: an efficient recyclable catalyst for the N-arylation of amines with aryl halides. Tetrahedron Lett. 54(21), 2740–2743 (2013)

    Article  CAS  Google Scholar 

  92. Silveira, C.C., Mendes, S.R., Líbero, F.M., Lenardão, E.J., Perin, G.: Glycerin and CeCl3 · 7H2O: a new and efficient recyclable medium for the synthesis of bis(indoly) methanes. Tetrahedron Lett. 50(44), 6060–6063 (2009)

    Article  CAS  Google Scholar 

  93. Delample, M., Villandier, N., Douliez, J.-P., Camy, S., Condoret, J.-S., Pouilloux, Y., Barrault, J., Jérôme, F.: Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β,β-diarylation of acrylates over palladium nanoparticles. Green Chem. 12(5), 804–808 (2010)

    Article  CAS  Google Scholar 

  94. Cabrera, D.M.L., Libero, F.M., Alves, D., Perin, G., Lenardao, E.J., Jacob, R.G.: Glycerol as a recyclable solvent in a microwave-assisted synthesis of disulfides. Green Chem. Lett. Rev. 5(3), 329–336 (2012)

    Article  CAS  Google Scholar 

  95. Chung, W.J., Baskar, C., Chung, D.G., Han, M.D., Lee, C.H.: Catalytic transfer hydrogenation of carboxylic acids to their corresponding alcohols by using glycerol as hydrogen donor. Repub Korean Kongkae Taeho Kongbo (2012)

    Google Scholar 

  96. Gladysz, J.A., Curran, D.P., Horváth, I.T.: Handbook of Fluorous Chemistry. Wiley (2006)

    Google Scholar 

  97. Horváth, I.T., Kiss, G., Cook, R.A., Bond, J.E., Stevens, P.A., Rábai, J., Mozeleski, E.J.: Molecular engineering in homogeneous catalysis: one-phase catalysis coupled with biphase catalyst separation. The fluorous-soluble HRh(CO){P[CH2CH2(CF2)5CF3]3}3 hydroformylation system. J. Am. Chem. Soc. 120(13), 3133–3143 (1998)

    Google Scholar 

  98. Horváth, I.T., Rábai, J.: Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266(5182), 72–75 (1994)

    Article  PubMed  Google Scholar 

  99. da Costa, R.C., Gladysz, J.A.: Syntheses and reactivity of analogues of Grubbs’ second generation metathesis catalyst with fluorous phosphines: a new phase-transfer strategy for catalyst activation. Adv. Synth. Catal. 349(1–2), 243–254 (2007)

    Article  CAS  Google Scholar 

  100. Shen, M.-G., Cai, C., Yi, W.-B.: Yb[N(SO2C8F17)2]3-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols in a fluorous biphase system. J. Fluor. Chem. 130(6), 595–599 (2009)

    Article  CAS  Google Scholar 

  101. Yamada, S., Gavryushin, A., Knochel, P.: Convenient electrophilic fluorination of functionalized aryl and heteroaryl magnesium reagents. Angew. Chemie 122(12), 2261–2264 (2010)

    Article  Google Scholar 

  102. Zhou, T., Xiao, X., Li, G., Cai, Z.: Study of polyethylene glycol as a green solvent in the microwave-assisted extraction of flavone and coumarin compounds from medicinal plants. J. Chromatogr. A 1218(23), 3608–3615 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. Corma, A., García, H., Leyva, A.: Polyethyleneglycol as scaffold and solvent for reusable CC coupling homogeneous Pd catalysts. J. Catal. 240(2), 87–99 (2006)

    Article  CAS  Google Scholar 

  104. Namboodiri, V.V., Varma, R.S.: Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem. 3(3), 146–148 (2001)

    Article  CAS  Google Scholar 

  105. Chandrasekhar, S., Narsihmulu, C., Sultana, S.S., Reddy, N.R.: Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the heck reaction. Org. Lett. 4(25), 4399–4401(2002)

    Google Scholar 

  106. Zhou, W., Wang, K., Wang, J.: Atom-efficient, palladium-catalyzed Stille coupling reactions of tetraphenylstannane with aryl iodides or aryl bromides in polyethylene glycol 400 (PEG-400). Adv. Synth. Catal. 351(9), 1378–1382 (2009)

    Article  CAS  Google Scholar 

  107. Shi, S., Zhang, Y.: Pd(OAc)2-catalyzed fluoride-free cross-coupling reactions of arylsiloxanes with aryl bromides in aqueous medium. J. Org. Chem. 72(15), 5927–5930 (2007)

    Article  CAS  PubMed  Google Scholar 

  108. Corma, A., García, H., Leyva, A.: Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling. Tetrahedron 61(41), 9848–9854 (2005)

    Article  CAS  Google Scholar 

  109. Kerru, N., Gummidi, L., Maddila, S., Jonnalagadda, S.B.: Polyethylene glycol (PEG-400) mediated one-pot green synthesis of 4,7-dihydro-2H-pyrazolo[3,4-b]pyridines under catalyst-free conditions. ChemistrySelect 5(40), 12407–12410 (2020)

    Article  Google Scholar 

  110. Kumar, R., Rawat, D., Adimurthy, S.: Polyethylene glycol (PEG-400) as methylene spacer and green solvent for the synthesis of heterodiarylmethanes under metal-free conditions. Eur. J. Org. Chem. 2020(23), 3499–3507 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Tiwari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, V.K., Kumar, A., Rajkhowa, S., Tripathi, G., Singh, A.K. (2022). Green Solvents: Application in Organic Synthesis. In: Green Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2734-8_3

Download citation

Publish with us

Policies and ethics