Skip to main content

Bioethanol Production from Sugar Beet Juices and Molasses for Economic and Environmental Perspectives

  • Chapter
  • First Online:
Sugar Beet Cultivation, Management and Processing

Abstract

In the present scenario, the demand for fossil fuel has become a fundamental issue for mankind across the globe. To render adequate the energy demand for transport, the mixing of bioethanol with gasoline has been a promising aspect in India as well as other developing and developed countries. The potential of co-products and transitional products of sugar beet processing as raw material for bioethanol production has a tremendous scope in view of the demand for ethanol as an alternative for fossil fuel. Molasses is one of the important by-products of sugar beet or sugarcane refining industries which can be utilized as a raw material in the fermentation industry, such as the production of feed yeasts, baker’s yeast, antibiotics, citric acid, amino acids, acetone/butanol, organic acids, and enzymes. Sugar beet molasses are enriched with different minerals and vitamins used as a potent medium to enhance the shelf life of fruits and vegetables through osmotic dehydration. Evaluation of molasses for their industrial application cannot be based on their chemical composition and origin as various benchmarks are established for their use in different processes. The utilization of molasses as the sole carbon source in a particular process, pre-treatment of molasses, and removal of inhibitor should be prerequisites. Calcium carbonate is used as a pre-treatment agent for the neutralization of the molasses during yeast and methanol production. However, for various other processes, they are boiled in an acidic or alkaline medium and separated out from the precipitate. For the citric acid, production molasses are boiled with potassium ferrocyanide and generally fermented together with precipitate. Currently, in India, sugarcane molasses is being used for the production of bioethanol, but cannot fulfil the demand for bioethanol. Therefore, the crop residues such as sugar beet molasses may be explored for biofuel production to meet the demand for alternative and renewable energy sources. In the rapid urbanization and industrial development, bioethanol production from agricultural wastes provides economic as well as environmental benefits. The present status of bioethanol production in India can be encouraged by the development of new low-cost technology for the bioconversion of agricultural wastes which might be helpful for economic and environmental insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GRAS:

Generally recognized as safe

PHA:

Polyhydroxyalkanoates

SBP:

Sugar beet pulp

References

  • Agi A, Junin R, Gbadamosi A, Abbas A, Azli NB, Oseh J (2019) Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions. Chem Eng Process 142:107556. https://doi.org/10.1016/j.cep.2019.107556

    Article  CAS  Google Scholar 

  • Amornraksa S, Subsaipin I, Simasatitkul L, Assabumrungrat S (2020) Systematic design of separation process for bioethanol production from corn stover. BMC Chem Eng 2(1):1–16

    Article  Google Scholar 

  • Asadi M (2006) Beet-sugar handbook. Wiley, Hoboken

    Book  Google Scholar 

  • Bastidas PA, Gil ID, Rodríguez G (2010) Comparison of the main ethanol dehydration technologies through process simulation. In 20th European symposium on computer aided process engineering

    Google Scholar 

  • Benoliel B, Torres FAG, de Moraes LMP (2013) A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. Springerplus 2(1):656. https://doi.org/10.1186/2193-1801-2-656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Root and tuber crops. Springer, New York, pp 173–121

    Chapter  Google Scholar 

  • Bonnin E, Grange H, Lesage-Meessen L, Asther M, Thibault JF (2000) Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydr Polym 41:143–151

    Article  CAS  Google Scholar 

  • Canilha L, Santos VT, Rocha GJ, e Silva JBA, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38(9):1467–1475. https://doi.org/10.1007/s10295-010-0931-2

    Article  CAS  PubMed  Google Scholar 

  • Caspeta L, Nielsen J (2015) Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and pre-adaptation to other stresses. mBio 6:e00431–15

    Google Scholar 

  • Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and byproducts by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32

    Google Scholar 

  • Chen F, Liu L, Cooke PH, Hicks KB, Zhang J (2008) Performance enhancement of poly(lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Ind Eng Chem Res 47:8667–8675

    Article  CAS  Google Scholar 

  • Chen M, Zhao Y, Yu S (2015) Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem 172:543–550

    Article  CAS  PubMed  Google Scholar 

  • Chou CC (2003) Preparation antioxidants enriched functional food products from sugar cane and beet. United States patent applications #127141

    Google Scholar 

  • Concha-Olmos J, Zuniga-Hansen ME (2012) Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem Eng J 192:29–36

    Article  CAS  Google Scholar 

  • Dhingra D, Michael M, Hradesh R, Patil RP (2012) Dietary fibre in foods: a review. J Food Sci Technol 49:255–266

    Article  CAS  PubMed  Google Scholar 

  • Dronnet VM, Axelos MAV, Renard CMGC, Thibault JF (1998) Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties. Carbohydr Polym 35:29–37

    Article  CAS  Google Scholar 

  • Duvernay WH, Chinn MS, Yencho GC (2013) Hydrolysis and fermentation of sweet potatoes for production of fermentable sugars and ethanol. Ind Crop Prod 42:527–537

    Article  CAS  Google Scholar 

  • Fadel M, Keera AA, Mouafi F, Kahil T (2013) High level ethanol from sugar cane molasses by a new thermotolerant Saccharomyces cerevisiae strain in industrial scale. Biotechnol Res Int 2013:6

    Article  CAS  Google Scholar 

  • Fakruddin M, Abdul Quayum M, Ahmed MM, Choudhury N (2012) Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST- 072011. Biotechnology 11:248–252

    Article  CAS  Google Scholar 

  • Filipcev B, Levic LJ (2014) Primena melase secerne repe i poluproizvoda od osmotski dehidriranog voca - povrca u melasi kao nutritivno vrednih dodataka za obogacivanje pekarskih i finih pekarskih proizvoda, Monografija, Univerzitet u Novom Sadu, Naucni institut za prehrambene tehnologije u Novom Sadu, Novi Sad

    Google Scholar 

  • Filipcev B, Bodroza-Solarov M, Simurina O, Cvetkovic B (2012) Use of sugar beet molasses in processing of gingerbread type biscuits: effect on quality characteristics, nutritional profile, and bioavailability of calcium and iron. Acta Alimentaria Hungarica 41(4):494–505

    Article  CAS  Google Scholar 

  • Filipcev B, Misan A, Saric B, Simurina O (2016) Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. Int J Food Sci Nutr 67:249–256

    Article  CAS  PubMed  Google Scholar 

  • Finkenstadt VL (2014) A review on the complete utilization of the sugarbeet. Sugar Tech 16(4):339–346

    Article  Google Scholar 

  • Fishman ML, Chau HK, Cooke PH, Yadav MP, Hotchkiss AT (2009) Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocoll 23:1554–1562

    Article  CAS  Google Scholar 

  • Fishman ML, Chau HK, Qi PX, Hotchkiss J, Yadav MP (2013) Physico-chemical characterization of protein-associated polysaccharides extracted from sugar beet pulp. Carbohydr Polym 92:2257–2266

    Article  CAS  PubMed  Google Scholar 

  • Gigac J, Fsierova M, Rosenberg M (2008) Improvement of paper strength via surface application of sugar beet pectin. Chem Pap 62:509–515

    Article  CAS  Google Scholar 

  • Goodban AF, Owens HS (1956) Isolation and properties of sugar beet araban. J Sugar Beet Res IX:129–132

    Article  Google Scholar 

  • Grahovac JA, Dodić JM, Dodić SN, Popov SD, Vučurović DG, Jokić AI (2012) Future trends of bioethanol co-production in Serbian sugar plants. Renew Sust Energ Rev 16(5):3270–3274

    Article  CAS  Google Scholar 

  • GRFA (Global Renewable Fuel Alliance) Reports (2017). http://globalrfa.org/news-media/2017-forecast-global-ethanol-production-stable

  • Gumienna M, Szwengiel A, Szczepańska-Alvarez A, Szambelan K, Lasik-Kurdyś M, Czarnecki Z, Sitarski A (2016) The impact of sugar beet varieties and cultivation conditions on ethanol productivity. Biomass Bioenergy 85:228–234

    Article  CAS  Google Scholar 

  • Guo X, Zhou J, Xiao D (2010) Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl Biochem Biotechnol 160:532–538

    Article  CAS  PubMed  Google Scholar 

  • Guru M, Bilgesu AY, Pamuk V (2001) Production of oxalic acid from sugar beet molasses by formed nitrogen oxides. Bioresour Technol 77:81–86

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Linden G, Zacchi G (2006) Bioethanol: the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production; which, where and how? Plant Prod Sci 13(3):221–234

    Article  Google Scholar 

  • Hickert LR, Da Cunha-Pereira F, De Souza-Cruz PB, Rosa CA, Ayub MAZ (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICVD254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514

    Article  CAS  PubMed  Google Scholar 

  • Higginbotham JD, McCarthy J (1998) Quality and storage of molasses. In van der Poel PW, Schiweck H, Schwartz T, Verlag, Albert Bartens KG (eds) Sugar technology-beet and cane manufacture. Berlin, pp 973–992

    Google Scholar 

  • Hood E, Teoh K, Devaiah S, Vicuna Requesens D (2013) Biomass crops for biofuels and bio-based products. In: Christou P, Savin R, Costa-Pierce B, Misztal I, Whitelaw CB (eds) Sustainable food production. Springer, New York, pp 250–279

    Chapter  Google Scholar 

  • Huang H, Qureshi N, Chen MH, Liu W, Singh V (2015) Ethanol production from food waste at high solids content with vacuum recovery technology. J Agric Food Chem 63(10):2760–2766

    Article  CAS  PubMed  Google Scholar 

  • Isono Y, Hoshino A (2000) Production of ethanol using granulated yeast cells prepared by a spray dryer. J Gen Appl Microbiol 46(4):231–234

    Article  CAS  PubMed  Google Scholar 

  • Jaimes JHB, Alvarez ME, Rojas JV, Maciel Filho R (2014) Pervaporation: promissory method for the bioethanol separation of fermentation. Chem Eng 38:139–144

    Google Scholar 

  • Kamzon MA, Abderafi S, Bounahmidi T (2016) Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. Int J Hydrog Energy 41(45):20880–20896

    Article  CAS  Google Scholar 

  • Khan MI, Lee MG, Shin JH, Kim JD (2017) Pretreatment optimization of the biomass of microcystis aeruginosa for efficient bioethanol production. AMB Express 7(1):1–9

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112(4):677–687. https://doi.org/10.1002/bit.25465

    Article  CAS  PubMed  Google Scholar 

  • Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109

    Article  CAS  Google Scholar 

  • Kolodynska D, Wnetrzak R, Leahy JJ, Hayes MHB, Kwapinski W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305

    Article  CAS  Google Scholar 

  • Kroon PA, Faulds CB, Brezillon C, Williamson G (1996) Enzymic release of ferulic acid from sugar beet pulp using a specific esterase from Aspergillus niger. In: Visser J (ed) Progress in biotechnology pectins and pectinases proceedings of an international symposium. Elsevier, Amsterdam, pp 761–768

    Chapter  Google Scholar 

  • Kuhnel S, Schols HA, Gruppen H (2011) Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol Biofuels 4:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sust Energ Rev 14(7):1830–1844

    Article  CAS  Google Scholar 

  • Kumar P, Varkolu M, Mailaram S, Kunamalla A, Mait SK (2019) Biorefinery polyutilization systems: production of green transportation fuels from biomass. In: Polygeneration with polystorage for chemical and energy hubs. Academic, pp 373–407

    Google Scholar 

  • Lin Y, Zhang W, Li C, Sakakibar K, Tanaka S, Kong H (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401

    Article  CAS  Google Scholar 

  • Liu R, Shen F (2008) Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour Technol 99(4):847–854

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang J, Liu L, Hotchkiss AT (2011) Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics. J Polym Environ 19:559–567

    Article  CAS  Google Scholar 

  • Mall AK, Misa V, Santeshwari PAD, Srivastava S (2021) Sugar beet cultivation in India: prospects for bioethanol production and value added coproducts. Sugar Tech 23:1218–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanares P, Ballesteros I, Negro M, Gonzalez A, Oliva J, Ballesteros M (2020) Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renew Energy 145:1235–1245. https://doi.org/10.1016/j.renene.2019.06.120

    Article  CAS  Google Scholar 

  • Marzo C, Díaz AB, Caro I, Blandino A (2019) Status and perspectives in bioethanol production from sugar beet. In: Ray RC, Ramachandran S (eds) Bioethanol production from food crops: sustainable sources, interventions, and challenges. Academic Press, pp 61–79

    Chapter  Google Scholar 

  • McCready RM, Stark JB, Goodban AE (1965) Preparation of galactinol and myoinositol from sugar beet sirup by chromatography on a cation exchange resin. J Sugar Beet Res 14:127–132

    Article  Google Scholar 

  • Melendez-Hernande PA, Hernandez-Beltran, JU, Hernandez-Guzman A, Morales-Rodriguez R, Torres-Guzman J, Hernandez-Escoto H (2019) Comparative of alkaline hydrogen peroxide pretreatment using NaOH and Ca(OH)2 and their effects on enzymatic hydrolysis and fermentation steps. Biomass Convers Biorefin 1–11. https://doi.org/10.1007/s13399-019-00574-3

  • Michel F, Thibault JF, Barry JL, de Baynast R (1988) Preparation and characterisation of dietary fibre from sugar beet pulp. J Sci Food Agric 42:77–85

    Article  CAS  Google Scholar 

  • Mohanty SK, Swain MR (2019) Bioethanol production from corn and wheat: food, fuel, and future. In: Bioethanol production from food crops. Academic, pp 45–59

    Google Scholar 

  • Mohapatra S, Pattathil S, Thatoi H (2017) Structural and functional characterization of two Pennisetum sp. biomass during ultrasono-assisted alkali pretreatment and enzymatic hydrolysis for understanding the mechanism of targeted delignification and enhanced saccharification. ACS Sustain Chem Eng 5(8):6486–6497

    Article  CAS  Google Scholar 

  • Mohapatra, S, Ray, R, Ramachandran S (2019) Bioethanol from biorenewable feedstocks: technology, economics, and challenges. In: Bioethanol production from food crops. Academic, pp 3–27

    Google Scholar 

  • Moosavi A, Karbassi A (2010) Bioconversion of sugar-beet molasses into xanthan gum. J Food Process Preserv 34:316–322

    Article  CAS  Google Scholar 

  • Moukamnerd C, Kawahara H, Katakura Y (2013) Feasibility study of ethanol production from food wastes by consolidated continuous solid-state fermentation. J Sust Bioenergy Syst 3:143–148

    Article  CAS  Google Scholar 

  • Niphadkar S, Bagade P, Ahmed S (2018) Bioethanol production: insight into past, present and future perspectives. Biofuels 9(2):229–238

    Article  CAS  Google Scholar 

  • Nordic Sugar (2012) GRAS notification for sugar beet fiber. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm347789.htm. Accessed 20 Oct 2013

  • Norsker M, Jensen M, Adler-Nissen J (2000) Enzymatic gelation of sugar beet pectin in food products. Food Hydrocoll 14:237–243

    Article  CAS  Google Scholar 

  • Pacheco AM, Gondim DR, Gonçalves LRB (2010) Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl Biochem Biotechnol 161:209–217

    Article  CAS  PubMed  Google Scholar 

  • Pavier C, Gandini A (2000) Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Ind Crop Prod 12:1–8

    Article  CAS  Google Scholar 

  • Ralet MC, Guillon F, Renard C, Thibault JF (2009) Sugar beet fiber: production, characteristics, food applications and physiological benefits. In: Cho SS, Samuel P (eds) Fiber ingredients: food applications and health benefits. Taylor & Francis, Florence

    Google Scholar 

  • Ray RC, Uppuluri KB, Trilokesh C, Lareo C (2019) Sweet sorghum for bioethanol production: scope, technology, and economics. In: Bioethanol production from food crops. Academic, pp 81–100

    Google Scholar 

  • Razmovski R, Vucurovic V (2012) Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92:1–8

    Article  CAS  Google Scholar 

  • Rezic T, Oros D, Markovi I, Kracher D, Ludwig R, Santek B (2013) Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol. J Microbiol Biotechnol 23:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • RFA (2017) Ethanol industry outlook. Renewable Fuels Association, Washington, DC. www.ethanolrfa.org/wp-content/uploads/2017/02/Ethanol-Industry-Outlook-2017.pdf

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Šantek B, Gwehenberger G, Šantek MI, Narodoslawsky M, Horvat P (2010) Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet. Resour Conserv Recycl 54(11):872–877

    Article  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Shihadeh JK, Huang H, Rausch KD, Tumbleson ME, Singh V (2014) Vacuum stripping of ethanol during high solids fermentation of corn. Appl Biochem Biotechnol 173(2):486–500

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sust Energ Rev 32:713–728

    Article  CAS  Google Scholar 

  • Singh R, Srivastava M, Shukla A (2016) Environmental sustainability of bioethanol production from rice straw in India: a review. Renew Sust Energ Rev 54:202–216

    Article  CAS  Google Scholar 

  • Singh S, Adak A, Saritha M, Sharma S, Tiwari R, Rana S, Nain L (2017) Bioethanol production scenario in India: potential and policy perspective. In: Sustainable biofuels development in India. Springer, Cham, pp 21–37

    Chapter  Google Scholar 

  • Susic S, Sinobad V (1989) Ispitivanja u cilju unapređenja industrije secera Jugoslavije. Hemijska Industrija 43(1–2):10–21

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2(3):472–499

    CAS  Google Scholar 

  • Tamimi MA, Palframan RJ, Cooper JM, Gibson GR, Rastall RA (2006) In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. J Appl Microbiol 100:407–414

    Article  CAS  Google Scholar 

  • Taskin M, Ortucu S, Aydogan MN, Arslan NP (2016) Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew Energy 99:198–204

    Article  CAS  Google Scholar 

  • Tgarguifa A, Abderafi S (2016) A comparative study of separation processes for bioethanol production. In: 2016 international renewable and sustainable energy conference (IRSEC). IEEE, pp 890-–895

    Google Scholar 

  • Thatoi H, Dash PK, Mohapatra S, Swain MR (2014) Bioethanol production from tuber crops using fermentation technology: a review. Int J Sustain Energy 35(5):443–468

    Article  Google Scholar 

  • Togrul H, Arslan N (2003) Flow properties of sugar beet pulp cellulose and intrinsic viscosity—molecular weight relationship. Carbohydr Polym 54:63–71

    Article  CAS  Google Scholar 

  • Togrul H, Arslan N (2004) Extending shelf-life of peach and pear by using CMC from sugar beet pulp cellulose as a hydrophilic polymer in emulsions. Food Hydrocoll 18:215–226

    Article  CAS  Google Scholar 

  • van der Pol E, Bakker R, van Zeeland A, Garcia DS, Punt A, Eggink G (2015) Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment. Bioresour Technol 181:114–123. https://doi.org/10.1016/j.biortech.2015.01.033

    Article  CAS  PubMed  Google Scholar 

  • Van Fan Y, Perry S, Klemeš JJ, Lee CT (2018) A review on air emissions assessment: transportation. J Clean Prod 194:673–684

    Article  CAS  Google Scholar 

  • Venkatesh V (2012) Biofuels in India: potential, policy and emerging paradigms. Indian J Agric Econom 67(2):268

    Google Scholar 

  • Wang FQ, Gao CJ, Yang CY, Xu P (2007) Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett 29(2):233–236

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Sharma-Shivappa RR, Olson JW, Khan SA (2013) Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind Crop Prod 43:802–811

    Article  CAS  Google Scholar 

  • Zentou H, Abidin ZZ, Yunus R, Awang Biak DR, Korelskiy D (2019) Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 7(7):458

    Article  CAS  Google Scholar 

  • Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27(6):849–856

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Verma, V.C., Mall, A.K., Pathak, A.D. (2022). Bioethanol Production from Sugar Beet Juices and Molasses for Economic and Environmental Perspectives. In: Misra, V., Srivastava, S., Mall, A.K. (eds) Sugar Beet Cultivation, Management and Processing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2730-0_45

Download citation

Publish with us

Policies and ethics