Skip to main content

Ferroelectric Materials: History and Present Status

  • Chapter
  • First Online:
Ferroelectric Perovskites for High-Speed Memory
  • 420 Accesses

Abstract

In spite of discovery of hysteresis characteristic in Rochelle salt, the phenomenon was recognised as anomalous dielectric response. As magnitude of spontaneous polarisation varied by changing temperature, stable ferroelectric structure was ungiven. In potassium dihydrogen phosphate (KH2PO4), sharp peak appeared in temperature versus dielectric constant plot. Below Curie temperature, ferroelectric hysteresis loop was observed. Ferroelectric hysteresis characteristic was also confirmed in KH2PO4 family: KH2AsO4. At that time, theoretical investigation was also started. The situation of dielectric study dramatically changed in the 1940s. Ogawa discovered that at room temperature, anomalously high dielectric constant is shown in BaTiO3 perovskite. The relation between spontaneous polarisation and crystal structure was investigated. It was concluded that tetragonal structure is responsible for spontaneous polarisation. Hippel et al. defined that ferroelectricity is the phenomenon that high dielectric constant maximum is connected with the concerted atomic displacements. After that, ferroelectricity has been used as scientific academic term in chemistry and physics. In BaTiO3 perovskite, ferroelectric behaviour is unstable. Because phase transition temperature is overlapped with operation temperature. In the 1990s, alternative ferroelectric, lead zirconate titanate: PbZrxTi1-xO3 perovskite (PZT) was employed as ferroelectric of Ferroelectric Random Access Memory (FeRAM). However, from the viewpoints of environment and health problems, Pb-free ferroelectrics have been required. Finally, other ferroelectric perovskites and hafnium oxide are shortly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Valasek, Phys. Rev. 17, 475-481 (1921)

    Article  CAS  Google Scholar 

  2. W. P. Mason, Phys. Rev. 72, 854-865 (1947)

    Article  CAS  Google Scholar 

  3. G. Busch, P. Sherrer, Naturwissenschaften 23, 737 (1935)

    Article  CAS  Google Scholar 

  4. B.C. Frazer, R. Pepinsky, Phys. Rev. 85, 479-480 (1952)

    Article  CAS  Google Scholar 

  5. G. Busch, Helv. Phys. Acta. 11, 269-298 (1938)

    CAS  Google Scholar 

  6. J. C. Slater, J Chem Phys 9, 16-33 (1941)

    Article  CAS  Google Scholar 

  7. S. Sawada, Butsuri 51, 633–638 (1996). https://doi.org/10.11316/butsuri1946.51.633

  8. T. Ogawa, Busseiron Kenkyu 1947 (6), 1–27 (1947). https://doi.org/10.11177/busseiron1943.1947.6_1

  9. E. Sawaguchi, Oyo Butsuri 75, 1202–1209 (2006). https://doi.org/10.11470/oubutsu.75.10_1202

  10. S. Miyake, R. Ueda, Busseiron Kenkyu 1947(6), 38–47 (1947). https://doi.org/10.11177/busseiron1943.1947.6_38

  11. S. Miyake, R. Ueda, J. Phys. Soc. Jpn. 2, 93-97 (1947)

    Article  CAS  Google Scholar 

  12. H. Takahashi, T. Nakamura, Busseiron Kenkyu 1947 (6), 27–38 (1947). https://doi.org/10.11177/busseiron1943.1947.6_27

  13. A. von Hippel, R. G. Breckenridge, F. G. Chesley, L. Tisza, Ind. Eng. Chem. 38, 1097-1109 (1946)

    Article  Google Scholar 

  14. A. von Hippel, Rev. Mod. Phys. 22, 221-237 (1950)

    Article  Google Scholar 

  15. Madelung O, Rössler U, Schulz M (ed.) SpringerMaterials (2000) BaTiO3 crystal structure, lattice parameters, Landolt-Börnstein - Group III Condensed Matter 41E

    Google Scholar 

  16. H. E. Kay, P. Vousden, Philos. Mag. 40, 1019-1040 (1949)

    Article  CAS  Google Scholar 

  17. R. G. Rhodes, Acta. Cryst. 2, 417-419 (1949)

    Article  CAS  Google Scholar 

  18. W. J. Merz, Phys. Rev. 88, 421-422 (1952)

    Article  CAS  Google Scholar 

  19. W. J. Merz, Phys. Rev. 95, 690-698 (1954)

    Article  CAS  Google Scholar 

  20. W. J. Merz, J. Appl. Phys. 27:938-943 (1956)

    Article  CAS  Google Scholar 

  21. W. Kinase, H. Takahashi, J. Phys. Soc. Jpn. 12, 464-476 (1957)

    Article  CAS  Google Scholar 

  22. R. Landauer, J. Appl. Phys. 28, 227-234 (1957)

    Article  CAS  Google Scholar 

  23. H. L. Stadler, J. Appl. Phys. 29, 1485-1487 (1958)

    Article  CAS  Google Scholar 

  24. R. C. Miller, A. Savage, Phys. Rev. 112, 755-762 (1958)

    Article  CAS  Google Scholar 

  25. R. C. Miller, A. Savage, Phys. Rev. 115, 1176-1180 (1959)

    Article  CAS  Google Scholar 

  26. R. C. Miller, A. Savage, Phys. Rev. Lett. 2, 294-296 (1959)

    Article  CAS  Google Scholar 

  27. A. F. Devonshire, Phil. Mag. J. Sci. 40, 1040-1063 (1949)

    Article  CAS  Google Scholar 

  28. A. F. Devonshire, Phil. Mag. J. Sci. 42, 1065-1079 (1951)

    Article  CAS  Google Scholar 

  29. A. F. Devonshire, Ferroelectricity The Fundamental Collections, ed. by J. A. Gonzalo, B. Jiménez, Wiley, 42–65 (2005)

    Google Scholar 

  30. B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S.-E. Park, D. E. Cox, G. Shirane, Phys. Rev. B, 61, 8687-8695 (2000)

    Article  CAS  Google Scholar 

  31. A. Bouzid, E.M. Bourim, M. Gabbay, G. Fantozzi, J. Eur. Cera. Soc. 25, 3213–3221 (2005)

    Article  CAS  Google Scholar 

  32. E. Cross, Nature 432, 24-25 (2004)

    Article  CAS  Google Scholar 

  33. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M Nakamura, Nature 432, 84-87 (2004)

    Article  CAS  Google Scholar 

  34. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121-4123 (2004)

    Article  CAS  Google Scholar 

  35. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236-2239 (1991)

    Article  CAS  Google Scholar 

  36. C. A. Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott, Nature 374, 627-629 (1995)

    Google Scholar 

  37. D. Rae, J. G. Thompson, R. L. Withers, Acta Cryst. B48, 418-428 (1992)

    Google Scholar 

  38. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phys. Lett. 74, 1904 (1999)

    Google Scholar 

  39. M. H. Franoombe, B. Lewis, Acta Cryst. 11, 696-703 (1958)

    Google Scholar 

  40. E. C. Subbarao, J. Am. Ceram. Soc. 43, 439-442 (1960)

    Google Scholar 

  41. E. C. Subbarao, J. Hrizo, J. Am. Ceram. Soc. 45, 528-531 (1962)

    Google Scholar 

  42. T. Mikolajick, U. Schroeder, Nature Materials 20, 718-719 (2021)

    Google Scholar 

  43. S. Horiguchi, Y. Tokura, Nature Materials 7, 357-366 (2008)

    Google Scholar 

  44. A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nature Chemistry 7, 281-294 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Onishi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onishi, T. (2022). Ferroelectric Materials: History and Present Status. In: Ferroelectric Perovskites for High-Speed Memory. Springer, Singapore. https://doi.org/10.1007/978-981-19-2669-3_5

Download citation

Publish with us

Policies and ethics