Skip to main content

Memory: World of Binary Code

  • Chapter
  • First Online:
Ferroelectric Perovskites for High-Speed Memory
  • 342 Accesses

Abstract

Transistor is indispensable circuit element for electronic device. In present, the number of transistors integrated in integrated circuit (IC) has become double every 1.5–2 years, following Moore’s law. Microcontroller unit consists of central processing unit (CPU), main memory, input and output. In present main memory, data is temporarily stored in volatile memories such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM). In memory, binary number system is applied in order to express character and decimal number. Hence, two different states are recognised as 0/1 digital information. Volatility implies that digital data disappears, when stopping supply of electric energy. DRAM and SRAM are volatile. For data storage memory, floating gate memory such as Electrically Erasable Programmable Read-Only Memory (EEPROM) and Hard Disk Drive (HDD) are in practical use. Recently, Solid State Drive (SSD) is getting popular rather than HDD for personal computers. EEPROM, HDD and SDD are classified as non-volatile memory. In recent years, non-volatile memory for main memory has been actively developed for further high performance computing. The candidates include Ferroelectric Random Access Memory (FeRAM), Ferroelectric-gate Field Effect Transistor (FeFET), Magnetoresistive Random Access Memory (MRAM), Resistive Random Access Memory (ReRAM) and Phase Change Memory (PCM). Each non-volatile memory has unique operating mechanism. It is phenomenologically explained how to read and write 0/1 digital information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. E. Moore, Electronics 38, 114–117 (1965)

    Google Scholar 

  2. K. F. Brennan, A. S. Brown, Theory of Modern Semiconductor Devices (John Wiley & Sons, Inc., 2002) p. 1

    Google Scholar 

  3. International Technology Roadmap For Semiconductors 2.0 2015 EDITION EXECUTIVE REPORT https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/

  4. D. Takashima, CMOS Processors and Memories, ed. By K. Iniewski (Springer, 2010) p. 361

    Google Scholar 

  5. M. Okuyama, Ferroelectric-Gate Field Effect Transistor Memories (Springer, 2020) p. 3

    Google Scholar 

  6. T. Miyazaki, H. M. Jin, The Physics of Ferromagnetism (Springer, 2012) p. 433

    Google Scholar 

  7. H. Yoda, Handbook of Spintronics, ed. by Y. Xu, D. D. Awschalom, J. Nitta (Springer, 2016) p. 1031

    Google Scholar 

  8. M. J. Marinella, V. V. Zhirnov, Emerging Nanoelectronic Devices, ed. by A. Chen, J. Hutchby, V. Zhirnov, G. Bourianoff (John Wiley & Sons, Inc., 2015) p. 246

    Google Scholar 

  9. P. C. Lacaze, J-C. Lacroix, Non-volatile Memories (John Wiley & Sons, Inc., 2014) p. 165

    Google Scholar 

  10. D. Lencer, M. Salinga, M. Wuttig, Emerging Non-Volatile Memories, ed. by S. Hong, O. Auciello, D. Wouters (Springer, 2014) p. 169

    Google Scholar 

  11. D. Richter, Flash Memories—Economic Principles of Performance, Cost and Reliability Optimization (Springer, 2014)

    Google Scholar 

  12. M. Julliere, Phys. Rev. Lett. 54A, 225–226 (1975)

    Article  CAS  Google Scholar 

  13. S. Maekawa, U. Gäfvert, IEEE Trans. Mag. 2, 707–708 (1982)

    Article  Google Scholar 

  14. T. Miyazaki, N. Tezuka, J. Mag. Mag. Mat. 139, L231–L234 (1995)

    Article  CAS  Google Scholar 

  15. J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995)

    Article  CAS  Google Scholar 

  16. S. Yuasa, T. Nagashima, A. Fukushima, Y. Suzuki, K. Ando, Nature Materials 3, 868–871 (2004)

    Article  CAS  Google Scholar 

  17. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S. H. Yang, Nature Materials 3, 862–867 (2004)

    Article  CAS  Google Scholar 

  18. B. K. Kaushik, Next Generation Spin Torque Memories (Springer, 2017)

    Google Scholar 

  19. L. Berger, Phys. Rev. B. 54, 9353–9358 (1996)

    Article  CAS  Google Scholar 

  20. J. C. Slonczewski, J. Magn. Magn. Mat. 159, L1–L7 (1996)

    Article  CAS  Google Scholar 

  21. I. Valov, M. N. Kozicki, J. Phys. D: Appl. Phys. 46, 074005 (2013)

    Article  CAS  Google Scholar 

  22. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  23. M. Muttig, N. Yamada, Narure Materials. 6, 824–832 (2007)

    Google Scholar 

  24. M. Terao, T. Morikawa, T. Ohta, Jpn. J. Appl. Phys. 48, 08001 (2009)

    Google Scholar 

  25. T. M. Coughlin, Digital Storage in Consumer Electronics—The Essential Guide (Springer, 2018) p. 25

    Google Scholar 

  26. T. Yokoshima, Electrochemical Nanotechnologies, ed. by T. Osaka, M. Datta, Y. Shacham-Diamand (Springer, 2010) p. 67

    Google Scholar 

  27. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 21, 2472–2475 (1988)

    Google Scholar 

  28. P. Griinberg, F. Saurenbach, W. Zinn, Phys, Rev. B. 39, 4828–4830 (1989)

    Google Scholar 

  29. R. Micheloni, A. Marelli, K. Eshghi (eds.), Inside Solid State Drives (SSDs) (Springer, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Onishi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onishi, T. (2022). Memory: World of Binary Code. In: Ferroelectric Perovskites for High-Speed Memory. Springer, Singapore. https://doi.org/10.1007/978-981-19-2669-3_3

Download citation

Publish with us

Policies and ethics