Skip to main content

Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films

  • Chapter
  • First Online:
Nanomaterials for Energy Conversion, Biomedical and Environmental Applications

Abstract

Bismuth ferrite (Bi–Fe–O)-based compounds have a wide range of features that are of interest both for basic science and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perejón A, Gil-González E, Sánchez-Jiménez PE, West AR, Pérez-Maqueda LA (2019) Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.09.008

    Article  Google Scholar 

  2. Fujii T, Takano M, Katano R, Bando Y, Isozumi Y, Okuda T (1990) Conversion electron Mössbauer spectroscopy of a single crystalline Bi3Fe5O12 film. J Magn Magn Mater. https://doi.org/10.1016/0304-8853(90)90640-C

    Article  Google Scholar 

  3. Qian-Jing R, Wei-De Z (2009) Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J Phys Chem C. https://doi.org/10.1021/jp810098f

    Article  Google Scholar 

  4. Wang Y, Daboczi M, Mesa CA, Ratnasingham SR, Kim JS, Durrant JR, Dunn S, Yan H, Briscoe J (2019) Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting. J Mater Chem A. https://doi.org/10.1039/c8ta09583c

    Article  Google Scholar 

  5. Yang H, Dai J, Wang L, Lin Y, Wang F, Kang P (2017) A novel approach to prepare Bi2Fe4O9 flower-like spheres with enhanced photocatalytic performance. Sci Rep. https://doi.org/10.1038/s41598-017-00831-3

    Article  Google Scholar 

  6. Ramirez FEN, Espinosa EE, Pedroza LS, Souza JA (2016) Humidity sensing effect in Bi25FeO39 sillenite-like compound. J Mater Sci. https://doi.org/10.1007/s10853-016-0310-0

    Article  Google Scholar 

  7. Flores Morales SS, León Flores JA, Pérez Mazariego JL, Marquina Fábrega V, Gómez González RW (2017) Synthesis of Bi25FeO39 by molten salts method and its mössbauer spectrum. Phys B Condens Matt. doi:https://doi.org/10.1016/j.physb.2016.10.019

  8. Li J, Chen W (2019) Synthesis and characterization of Bi-Fe-O amorphous nanoparticles for Photocatalysis by Sol-Gel method. Integr Ferroelectr. https://doi.org/10.1080/10584587.2019.1592621

    Article  Google Scholar 

  9. Suzuki K, Onodera H, Sakurai M, Masuda S, Matsumoto A, Sadamura H (1986) Structure and magnetic properties of Bi-Zn-Fe-O amorphous films. IEEE Trans Magn. https://doi.org/10.1109/tmag.1986.1064353

    Article  Google Scholar 

  10. Krnel M, Vrtnik S, Jelen A, Koželj P, Jagličić Z, Meden A, Feuerbacher M, Dolinšek J (2020) Speromagnetism and asperomagnetism as the ground states of the Tb-Dy-Ho-Er-Tm “ideal” high-entropy alloy. Intermetallics. https://doi.org/10.1016/j.intermet.2019.106680

    Article  Google Scholar 

  11. Quickel TE, Schelhas LT, Farrell RA, Petkov N, Le VH, Tolbert SH (2015) Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism. Nat Commun. https://doi.org/10.1038/ncomms7562

    Article  Google Scholar 

  12. Singh A, Chen J (2019) Large vertical hysteretic shift and signature of exchange bias in BiFeO3/SrRuO3 heterostructure. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.07.024

    Article  Google Scholar 

  13. Liu H, Yang P, Yao K, Wang J (2011) Growth rate induced monoclinic to tetragonal phase transition in epitaxial BiFeO3 (001) thin films. Appl Phys Lett. https://doi.org/10.1063/1.3561757

    Article  Google Scholar 

  14. Dong W, Guo Y, Guo B, Liu H, Li H, Liu H (2013) Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode. Mater Lett. https://doi.org/10.1016/j.matlet.2012.10.031

    Article  Google Scholar 

  15. Chen Z, Wang Y, Zheng D, Sun F, Deng X, Tan Z, Tian J, Zhang L, Zeng M, Fan Z et al (2019) Polarization tunable and enhanced photovoltaic properties in tetragonal-like BiFeO3 epitaxial films with graphene top electrode. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152013

    Article  Google Scholar 

  16. Chu YH, Zhao T, Cruz MP, Zhan Q, Yang PL, Martin LW, Huijben M, Yang CH, Zavaliche F, Zheng H et al. (2007) Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl Phys Lett, 90. doi:https://doi.org/10.1063/1.2750524

  17. Sone K, Naganuma H, Ito M, Miyazaki T, Nakajima T, Okamura S (2015) 100-nm-sized magnetic domain reversal by the magneto-electric effect in self-assembled BiFeO<inf>3</inf>/CoFe<inf>2</inf>O<inf>4</inf> bilayer films. Sci Rep, 5. doi:https://doi.org/10.1038/srep09348

  18. Gaikovich KP, Gribkov BA, Mironov VL, Treskov SA, Zhilin AV (2002) Image retrieval in scanning probe microscopy taking into account the probe-surface interaction non-locality. In Proceedings of the Physics of Low-Dimensional Structures

    Google Scholar 

  19. Glover CC, Killgore JP, Tung RC (2018) Scanning speed phenomenon in contact-resonance atomic force microscopy. Beilstein J Nanotechnol. https://doi.org/10.3762/bjnano.9.87

    Article  Google Scholar 

  20. H Ki, PSM, JM (2002) Modelling of high-density laser–material interaction using fast level set method. J Phys D Appl Phys 34:364–372

    Google Scholar 

  21. Sobiestianskas R, Hardy A, Banys J, D’haen J, van B (2009) Microwave dielectric properties of BiFeO3 thin film prepared by aqueous chemical solution deposition method. Process Appl Ceram. doi:https://doi.org/10.2298/pac0904167s

  22. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. https://doi.org/10.1021/cr900056b

    Article  CAS  Google Scholar 

  23. Iatsunskyi I, Coy E, Viter R, Nowaczyk G, Jancelewicz M, Baleviciute I, Załeski K, Jurga S (2015) Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.5b06745

    Article  Google Scholar 

  24. Orudzhev F, Ramazanov S, Sobola D, Isaev A, Wang C, Magomedova A, Kadiev M, Kaviyarasu K (2020) Atomic layer deposition of mixed-layered aurivillius phase on tio2 nanotubes: synthesis, characterization and photoelectrocatalytic properties. Nanomaterials 10:1–16. https://doi.org/10.3390/nano10112183

    Article  CAS  Google Scholar 

  25. Orudzhev FF, Ramazanov SM, Isaev AB, Alikhanov NMR, Sobola D, Presniakov MY, Kaviyarasu K (2019) Self-organization of layered perovskites on TiO2nanotubes surface by atomic layer deposition. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd., vol. 36, pp. 364–367

    Google Scholar 

  26. Lomanova NA, Tomkovich MV, Osipov AV, Ugolkov VL (2019) Synthesis of nanocrystalline materials based on the Bi2O3-TiO2 system. Russ J Gen Chem 2019 8910 89, 2075–2081. doi:https://doi.org/10.1134/S1070363219100141

  27. Lu CD, Chang LS, Lu YF, Lu FH (2009) The growth of interfacial compounds between titanium dioxide and bismuth oxide. Ceram Int. https://doi.org/10.1016/j.ceramint.2009.03.001

    Article  Google Scholar 

  28. Lomanova NA, Ugolkov VL, Gusarov VV (2007) Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3 system. Glas Phys Chem 2007 336, 33, 608–612. doi:https://doi.org/10.1134/S1087659607060120

  29. Lomanova NA, Morozov MI, Ugolkov VL, Gusarov VV (2006) Properties of Aurivillius phases in the Bi 4Ti 3O 12-BiFeO 3 system. Inorg Mater. https://doi.org/10.1134/S0020168506020142

    Article  Google Scholar 

  30. Morozov MI, Gusarov VV (2002) Synthesis of A m - 1Bi 2M mO 3m + 3 compounds in the Bi 4Ti 3O 12-BiFeO 3 system. Inorg Mater. https://doi.org/10.1023/A:1016252727831

    Article  Google Scholar 

  31. Armstrong RA, Newnham RE (1972) Bismuth titanate solid solutions. Mater Res Bull. https://doi.org/10.1016/0025-5408(72)90154-7

    Article  Google Scholar 

  32. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. https://doi.org/10.1016/J.COSSMS.2007.08.004

    Article  CAS  Google Scholar 

  33. Achary SN, Patwe SJ, Krishna PSR, Shinde AB, Tyagi AK (2008) Cation disorder and structural studies on Bi4-xNd xTi3O12 (0.0 ≤ × ≤ 2.0). In Proceedings of the Pramana - Journal of Physics

    Google Scholar 

  34. Zhang ST, Lu MH, Wu D, Chen YF, Ming NB (2005) Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl Phys Lett. https://doi.org/10.1063/1.2147719

    Article  Google Scholar 

  35. Ramazanov S, Ţălu Ş, Dallaev R, Ramazanov G, Škarvada P, Oulehla J, Sobola D, Nazarov D (2021) Surface morphology and X-ray photoelectron spectroscopy of BiFeO3 thin films deposited on top of Ta2O5/Si layers. E3S Web Conf 295, 04009. doi:https://doi.org/10.1051/E3SCONF/202129504009

  36. Li X, Wang Y, Wang F, Liang A (2021) Ta2O5 in-situ composite Ta-based nanocrystalline coating with wonderful wear resistance and related wear mechanisms. Mater Lett 298:130000. https://doi.org/10.1016/j.matlet.2021.130000

    Article  CAS  Google Scholar 

  37. Wang R, Pan L, Han Q, Zhu H, Wan M, Mai Y (2021) Reactively sputtered Ta2O5 solid electrolyte layers in all thin film electrochromic devices. J Alloys Compd 865:158931. https://doi.org/10.1016/j.jallcom.2021.158931

    Article  CAS  Google Scholar 

  38. Das S, Singh VK (2021) The role of Ta2O5 thin film on a plasmonic refractive index sensor based on photonic crystal fiber. Photonics Nanostructures - Fundam Appl 44:100904. https://doi.org/10.1016/j.photonics.2021.100904

    Article  Google Scholar 

  39. Knápek A, Sobola D, Burda D, Daňhel A, Mousa M, Kolařík V (2019) Polymer graphite pencil lead as a cheap alternative for classic conductive SPM probes. Nanomaterials 9. doi:https://doi.org/10.3390/nano9121756

  40. Ţǎlu Ş, Marković Z, Stach S, Todorović Marković B, Ţǎlu M (2014) Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation. Appl Surf Sci 289:97–106. https://doi.org/10.1016/J.APSUSC.2013.10.114

    Article  Google Scholar 

  41. Ţălu Ş, Morozov IA, Yadav RP (2019) Multifractal analysis of sputtered indium tin oxide thin film surfaces. Appl Surf Sci 484:892–898. https://doi.org/10.1016/J.APSUSC.2019.04.170

    Article  Google Scholar 

  42. Ţălu Ş, Bramowicz M, Kulesza S, Dalouji V, Solaymani S, Valedbagi S (2016) Fractal features of carbon–nickel composite thin films. Microsc Res Tech 79:1208–1213. https://doi.org/10.1002/jemt.22779

    Article  CAS  Google Scholar 

  43. Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N (2018) C sp 2 /sp 3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl Surf Sci 452:223–231. https://doi.org/10.1016/j.apsusc.2018.04.269

    Article  CAS  Google Scholar 

  44. Sobola D, Ramazanov S, Koneĉnỳ M, Orudzhev F, Kaspar P, Papež N, Knápek A, Potoĉek M (2020) Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials (Basel). https://doi.org/10.3390/ma13102402

    Article  Google Scholar 

  45. Ramazanov S, Sobola D, Orudzhev F, Knápek A, Polčák J, Potoček M, Kaspar P, Dallaev R (2020) Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials 10:1–18. https://doi.org/10.3390/nano10101990

    Article  CAS  Google Scholar 

  46. Sobola D, Papež N, Dallaev R, Ramazanov S, Hemzal D, Holcman V (2019) Characterization of nanoblisters on HOPG surface. J Electr Eng. 70. doi:https://doi.org/10.2478/jee-2019-0055

  47. Ahmad M, Al-Hawat S, Akel M, Mrad O (2015) Characterization of bismuth nanospheres deposited by plasma focus device. J Appl Phys. https://doi.org/10.1063/1.4907579

    Article  Google Scholar 

  48. Terajima H, Fujiwara S (1975) Temperature dependence of the surface diffusion distance of bismuth atoms adsorbed on mica, carbon and silicon monoxide surfaces. Thin Solid Films. https://doi.org/10.1016/0040-6090(75)90304-1

    Article  Google Scholar 

  49. Albrecht D, Lisenkov S, Ren W, Rahmedov D, Kornev IA, Bellaiche L (2010) Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys Rev B – Condens Matter Mater Phys, 81, 140401. doi:https://doi.org/10.1103/PHYSREVB.81.140401/FIGURES/2/MEDIUM

  50. Lee YH, Han TC, Huang JCA (2003) Magnetic properties of Fe3C nanograins embedded in carbon matrix. J Appl Phys 93:8462. https://doi.org/10.1063/1.1555852

    Article  CAS  Google Scholar 

  51. Wang Z, Tang C, Sachs R, Barlas Y, Shi J (2015) Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.114.016603

    Article  Google Scholar 

  52. Ramazanov S, Sobola D, Ţălu Ş, Orudzev F, Arman A, Kaspar P, Dallaev R, Ramazanov G (2021) Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc Res Tech. https://doi.org/10.1002/JEMT.23996

    Article  Google Scholar 

  53. Ramazanov SM, Ramazanov GM (2014) Relaxing layers of silicon carbide grown on a silicon substrate by magnetron sputtering. Tech Phys Lett 40:44–47. https://doi.org/10.1134/S106378501401009X

    Article  CAS  Google Scholar 

  54. Ştefan Ţ, Sebastian S, Shikhgasan R, Dinara S, Guseyn R (2017) Multifractal characterization of epitaxial silicon carbide on silicon. Mater Sci Pol 35:539–547. https://doi.org/10.1515/msp-2017-0049

    Article  CAS  Google Scholar 

  55. Ramazanov S, Ţălu Ş, Sobola D, Orudzev F, Ramazanov G, Selimov D, Kaspar P, Macků R, Nazarov A (2021) Crack resistance of bismuth ferrite films obtained on a flexible substrate. E3S Web Conf 295, 04008. doi:https://doi.org/10.1051/E3SCONF/202129504008

  56. Alikhanov NMR, Murlieva ZK, Sarnatskii VM, Palchaev DK, Sakhatskii AS, Murliev EK, Shevchenko EV (2016) Synthesis, structure and properties of nanostructured materials based on BiFeO3. AIP Conf Proc 1748:040011. https://doi.org/10.1063/1.4954363

    Article  Google Scholar 

  57. Orudzhev F, Ramazanov S, Sobola D, Alikhanov N, Holcman V, Škvarenina L, Kaspar P, Gadjilov G (2020) Piezoelectric current generator based on bismuth ferrite nanoparticles. Sensors (Switzerland) 20:1–9

    Article  Google Scholar 

  58. Orudzhev FF, Alikhanov N-R, Rabadanov MK, Ramazanov SM, Isaev AB, Gadzhimagomedov SK, Aliyev AS, Abdullaev VR (2018) Synthesis and study of the properties of magnetically separable Nanophotocatalyst BiFeO3. Chem Probl 16:484–495. https://doi.org/10.32737/2221-8688-2018-4-484-495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Orudzhev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orudzhev, F.F., Ramazanov, S.M., Sobola, D., Alikhanov, N.M.R., Dallaev, R.S. (2022). Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films. In: Kasinathan, K., Elshikh, M.S., Al Farraj, D.AA. (eds) Nanomaterials for Energy Conversion, Biomedical and Environmental Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-2639-6_6

Download citation

Publish with us

Policies and ethics