Skip to main content

Large Eddy Simulation of Axisymmetric Scramjet Based on Dynamic Zone Flamelet Model

  • Conference paper
  • First Online:
The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2 (APISAT 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 913))

Included in the following conference series:

  • 1597 Accesses

Abstract

To verify the effectiveness of a novel axisymmetric scramjet, Improved Delay Detached Eddy Simulation (IDDES) coupled with Dynamic Zone Flamelet Model (DZFM) based on 60 million cells was conducted to investigate the performance of the full-scale engine. Four mesh sets with different refinement levels and adopting hexahedral structured cells were used for the grid independence verification. The pressure agrees well with the experimental data. Due to the absence of the corner effect, the boundary layer is thinner and the jet penetration depth is low. The poor mixing between the transverse fuel jet and the crossflow causes weak combustion and a low-pressure rise ratio. The cavity plays four roles in enhancing combustion: a radial pool, a low-speed bay, a high-temperature zone, and a premixer. Axisymmetric scramjets without any flame holders overall have poor mixing and combustion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber RJ, Mackay JS (1958) An analysis of ramjet engines using supersonic combustion. Lewis Flight Propulsion Laboratory, Washington, DC

    Google Scholar 

  2. Billig FS (1993) Research on supersonic combustion. J Propul Power 9(4):499–514. https://doi.org/10.2514/3.23652

    Article  Google Scholar 

  3. Mehta UB (1996) Strategy for developing air-breathing aerospace planes. J Aircr 33(2):377–385. https://doi.org/10.2514/3.46948

    Article  Google Scholar 

  4. Curran ET (2001) Scramjet engines: The first forty years. J Propul Power 17(6):1138–1148. https://doi.org/10.2514/2.5875

    Article  Google Scholar 

  5. Seleznev RK, Surzhikov ST, Shang JS (2019) A review of the scramjet experimental data base. Prog Aerosp Sci 106:43–70. https://doi.org/10.1016/j.paerosci.2019.02.001

    Article  Google Scholar 

  6. Liu Q, Baccarella D, Lee T (2020). Review of combustion stabilization for hypersonic airbreathing propulsion. Prog Aerosp Sci 119. https://doi.org/10.1016/j.paerosci.2020.100636

  7. Das N, Pandey KM, Sharma KK (2021). A brief review on the recent advancement in the field of jet engine scramjet engine. Materials today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.1035

  8. Yu G, Li JG, Chang XY et al (2001) Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors. J Propul Power 17(6):1263–1272. https://doi.org/10.2514/2.5874

    Article  Google Scholar 

  9. Heiser WH, Pratt DT (1994) Hypersonic airbreathing propulsion. AIAA, Washington

    Book  Google Scholar 

  10. Sydenham (2006) The rebirth of round hypersonic propulsion. 42nd AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. https://doi.org/10.2514/6.2006-5035

  11. Vanyai T, Grieve S, Street O et al (2019) Fundamental scramjet combustion experiments using hydrocarbon fuel. J Propul Power 35(5):953–963. https://doi.org/10.2514/6.2018-5201

    Article  Google Scholar 

  12. Liu Q, Baccarella D, Lee T et al (2017) Influences of inlet geometry modification on scramjet flow and combustion dynamics. J Propul Power 33(5):1179–1186. https://doi.org/10.2514/1.B36434

    Article  Google Scholar 

  13. Denman ZJ, Chan WYK, Brieschenk S et al (2016) Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine. J Propul Power 32(6):1462–1471. https://doi.org/10.2514/1.B36099

    Article  Google Scholar 

  14. Barnes FW, Segal C (2015) Cavity-based flameholding for chemically-reacting supersonic flows. Prog Aerosp Sci 76:24–41. https://doi.org/10.1016/j.paerosci.2015.04.002

    Article  Google Scholar 

  15. Weller HG, Tabor G, Jasak H et al (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6). https://doi.org/10.1063/1.168744

  16. Kee RJ, Rupley FM, Miller JA (1989) Chemkin-Ii: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories, Albuquerque, TR SAND89-8009B

    Google Scholar 

  17. Kurganov A, Tadmor E (2000) New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J Comput Phys 160(1):241–282. https://doi.org/10.1006/jcph.2000.6459

    Article  MathSciNet  MATH  Google Scholar 

  18. Greenshields CJ, Weller HG, Gasparini L et al (2009) Implementation of semi-discrete, non-staggered central schemes in a collocated, polyhedral, finite volume framework, for high-speed viscous flows. Int J Numer Meth Fluids 38(2):139–161. https://doi.org/10.1002/fld.2069

    Article  Google Scholar 

  19. Vuorinen V, Larmi M, Schlatter P et al (2012) A low-dissipative, scale-selective discretization scheme for the Navier-Stokes equations. Comput Fluids 70:195–205. https://doi.org/10.1016/j.compfluid.2012.09.022

    Article  MathSciNet  MATH  Google Scholar 

  20. Chase MW (1998) NIST-JANAF thermochemical tables 2 volume-set (journal of physical and chemical reference data monograph 9). monograph 9. American Institute of Physics, Maryland, pp 1–1952. https://doi.org/10.1063/1.555993

  21. Greenshields CJ, Weller HG, Gasparini L et al (2009) Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int J Numer Meth Fluids 63:1–21. https://doi.org/10.1002/fld.2069

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu K, Li X, Yao W et al (2015). Three-dimensional numerical study of the acoustic properties of a highly under expanded jet. 20th AIAA international space planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2015-3572

  23. Li X, Wu K, Yao W et al (2015) A Comparative Study of Highly Underexpanded Nitrogen and Hydrogen Jets Using Large Eddy Simulation.20th AIAA international space planes and hypersonic systems and technologies conference. https://doi.org/10.1016/j.ijhydene.2016.01.120.

  24. Li X, Yao W, Fan X (2016) Large-eddy simulation of time evolution and instability of highly under expanded sonic jets. AIAA J 54(10):3191–3211. https://doi.org/10.2514/1.J054689

    Article  Google Scholar 

  25. Li X, Zhou R, Yao W et al (2017) Flow characteristic of highly under expanded jets from various nozzle geometries. Appl Therm Eng 125:240–253. https://doi.org/10.1016/j.applthermaleng.2017.07.002

    Article  Google Scholar 

  26. Li X, Fan E, Yao W et al (2017) Numerical investigation of characteristic frequency excited highly under expanded jets. Aerosp Sci Technol 63:304–316. https://doi.org/10.1016/j.ast.2017.01.005

    Article  Google Scholar 

  27. Yachao L, Yao W, Fan X (2017). A low-dissipation scheme based on OpenFoam designed for large eddy simulation in compressible flow.21st AIAA international space planes and hypersonics technologies conference. https://doi.org/10.2514/6.2017-2444.

  28. Yao W, Wang J, Lu Y et al (2015) Full-scale detached eddy simulation of kerosene fueled scramjet combustor based on skeletal mechanism. 20th AIAA international space planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2015-3579.

  29. Wu K, Zhang P, Yao W et al (2017) Numerical investigation on flame stabilization in DLR hydrogen supersonic combustor with strut injection. Combust Sci Technol 189(12):2154–2179. https://doi.org/10.1080/00102202.2017.1365847

    Article  Google Scholar 

  30. Yao W, Lu Y, Li X et al (2016) Improved delayed detached eddy simulation of a high-ma active-cooled scramjet combustor based on skeletal kerosene mechanism. 52nd AIAA/SAE/ASEE joint propulsion conference. https://doi.org/10.2514/6.2016-4761

  31. Yao W, Yuan Y, Li X et al (2018) Comparative study of elliptic and round scramjet combustors fueled by RP-3. J Propul Power 34(3):772–786. https://doi.org/10.2514/1.B36721

    Article  Google Scholar 

  32. Wu K, Yao W, Fan X (2017) Development and fidelity evaluation of a skeletal ethylene mechanism under scramjet-relevant conditions. Energy Fuels 31(12):14296–14305. https://doi.org/10.1021/acs.energyfuels.7b03033

    Article  Google Scholar 

  33. Yao W, Lu Y, Wu K et al (2018) Modeling analysis of an actively cooled scramjet combustor under different kerosene/air ratios. J Propul Power 34(4):975–991. https://doi.org/10.2514/1.B36866

    Article  Google Scholar 

  34. Fureby C, Moller SI (1995) Large eddy simulation of reacting flows applied to bluff body stabilized flames. AIAA J 33(12):2339–2347. https://doi.org/10.2514/3.12989

    Article  MATH  Google Scholar 

  35. Candler GV, Martín MP, Piomelli U (2000) Subgrid-scale models for compressible large-eddy simulations. theoretical & computational fluid dynamics. Theoret Comput Fluid Dyn. https://doi.org/10.1007/PL00020896

  36. Tramecourt N, Menon S, Amaya J (2004). LES of Supercritical Combustion in a Gas Turbine Engine. 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. https://doi.org/10.2514/6.2004-3381

  37. Kundu P, Pei Y, Wang M et al (2014) Evaluation of turbulence-chemistry interaction under diesel engine conditions with multi-flamelet RIF model. Atom Sprays 24(9):779–800. https://doi.org/10.1615/AtomizSpr.2014010506

  38. Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS-LES approach with delayed-des and wall-modelled LES capabilities. Int J Heat Fluid Flow 29:1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.0

    Article  Google Scholar 

  39. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA-92-0439, January 6–9. https://doi.org/10.2514/6.1992-439

  40. Yao W, Fan X (2017) Development of zone flamelet model for scramjet combustor modeling. 21st AIAA international space planes and hypersonic systems and technology conference. http://dspace.imech.ac.cn/handle/311007/72183

  41. Yao W, Li B (2019) Application of dynamic zone flamelet model to a GH2/GO2 rocket combustor. AIAA Propulsion and Energy 2019 Forum. https://doi.org/10.2514/6.2019-3868

  42. Yao W, Liu H, Xue L et al (2021) Performance analysis of a strut-aided hypersonic scramjet by full-scale IDDES modeling. Aero Sci Tech 117:106941. https://doi.org/10.1016/j.ast.2021.106941

  43. Yao W (2020) On the application of dynamic zone flamelet model to large eddy simulation of supersonic hydrogen flame. Int J Hydrogen Energy 45(41):21940–21955. https://doi.org/10.1016/j.ijhydene.2020.05.189

    Article  Google Scholar 

  44. O’brien EE, Jiang TL (1991) The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys Fluids A Fluid Dyn 3(12):3121–3123. https://doi.org/10.1063/1.858127

  45. Yao W, Wu K, Fan X (2019) Influences of domain symmetry on supersonic combustion modeling. J Propul Power 35(2):451–465. https://doi.org/10.2514/1.B37227

    Article  Google Scholar 

  46. Yentsch RJ, Gaitonde DV (2014) Comparison of mode-transition phenomena in axisymmetric and rectangular scramjet flowpaths. 52nd Aerospace Sciences Meeting. https://doi.org/10.2514/6.2014-0625

  47. Warnatz J (1981) The structure of laminar alkane-, alkene-, and acethylene flames. Eighteenth Symp Combus 18:369–384. https://doi.org/10.1016/S0082-0784(81)80042-2

  48. Law CK, Makino A, Lu TF (2006) On the Off-stoichiometric peaking of adiabatic flame temperature. Combust Flame 145:808–819. https://doi.org/10.1016/j.combustflame.2006.01.009

    Article  Google Scholar 

Download references

Acknowledgements

This article is funded by National Key Research and Development Program of China (2019YFB1704200)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, W., Liu, H., Li, L., Yao, W. (2023). Large Eddy Simulation of Axisymmetric Scramjet Based on Dynamic Zone Flamelet Model. In: Lee, S., Han, C., Choi, JY., Kim, S., Kim, J.H. (eds) The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2. APISAT 2021. Lecture Notes in Electrical Engineering, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-19-2635-8_90

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2635-8_90

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2634-1

  • Online ISBN: 978-981-19-2635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics