Skip to main content

Overview on Medicinal Impacts of 1,2,4-Triazole Derivatives

  • Conference paper
  • First Online:
Tailored Functional Materials

Abstract

The nucleus 1,2,4-triazole is found in a wide variety of biologically active molecules. Interest in 1,2,4-triazole chemistry in recent decades has been increasing rapidly because of diverse biological and pharmaceutical applications, mostly due to the diversity of this N-heterocyclic moiety in medicinal chemistry. More than 35 drugs containing this nucleus have been released on the market. The nucleus of the 1,2,4-triazole is metabolically stable and interacts as a pharmacophore by serving as a hydrogen bond acceptor and donor at the active site of a receptor. The triazole nucleus can improve the drug’s pharmacological profile by increasing the solubility of the ligand due to its polar character. This chapter highlights the unique features about the potential possible role of 1,2,4-triazole derivatives and summarizes biological, and pharmacological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

U.S. FDA:

United State Food and Drug Administration

HIV:

Human immunodeficiency virus

NAD:

Nicotinamide adenine dinucleotide

DNA:

Deoxyribonucleic acid

HER2:

Human epidermal growth factor receptor 2

COX:

Cyclooxygenase

XPO1:

Exportin 1

OAT4:

Organic anion carrier 4

URAT1:

Uric acid carrier 1

DPP-4:

Dipeptidyl peptidase-4

PARP:

Poly(ADP-ribose)polymerase

RNA:

Ribonucleic acid

SAR:

Structure–activity relationship

GLP-1:

Glucagon-like peptide 1

AIDS:

Acquired immune deficiency syndrome

GIP:

Gastric inhibitory polypeptide

TNFα:

Tumour necrosis factor α

HSV:

Herpes simplex viruses

JNK:

Jun N-terminal kinase

References

  1. Li Z, Cao Y, Zhan P, Pannecouque C, Balzarini J, Clercq ED, Liu X (2013) Synthesis and anti-HIV evaluation of novel 1,2,4-triazole derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. Lett Drug Des Discov 10:27–34

    Article  Google Scholar 

  2. Wade PC, Vogt BR, Kissick TP, Simpkins LM, Palmer DM, Millonig RC (1982) 1-Acyltriazoles as antiinflammatory agents. J Med Chem 25:331–333

    Article  CAS  Google Scholar 

  3. Strzelecka M, ĹšwiÄ…tek P (2021) 1,2,4-triazoles as important antibacterial agents. Pharmaceuticals 14:224

    Article  CAS  Google Scholar 

  4. Asif M (2015) Antiviral and antiparasitic activities of various substituted triazole derivatives: a mini review. Chem Int 1:71–80

    CAS  Google Scholar 

  5. El-Emary TI, El-Mohsen SAA (2012) Multi-component one-pot synthesis and antimicrobial activities of 3-methyl-1,4-diphenyl-7-thioxo-4,6,8,9 tetrahydropyrazolo[5,4-b]pyrimidino[5,4-e]pyridine-5-one and related derivatives. Molecules 17:14464–14483

    Article  CAS  Google Scholar 

  6. Luo Y, Zhang S, Liu Z-J, Chen W, Fu J, Zeng Q-F, Zhu H-L (2013) Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur J Med Chem 64:54–61

    Article  CAS  Google Scholar 

  7. Abdelhamid AO, Fahmi AA, Ali AA (2013) Synthesis of some new fused azolopyrimidines, azolotriazines and pyridines containing coumarines moieties. Int J Adv Res 1:627–644

    CAS  Google Scholar 

  8. Nassar MY, Aly HM, Moustafa ME, Abdelrahman EA (2017) Synthesis, characterization and biological activity of new 3-substitued-4-amino-5-hydrazino-1,2,4-triazole Schiff bases and their Cu(II) complexes: a new approach to CuO nanoparticles for photocatalytic degradation of methylene blue dye. J Inorg Organomet Polym 27:1220–1233

    Article  CAS  Google Scholar 

  9. Sayed HH, Morsy EMH, Felfel EM (2010) Synthesis and reactions of some novel nicotinonitrile, thiazolotriazole, and imidazolotriazole derivatives for antioxidant evaluation. Synth Commun 40:1360–1370

    Article  CAS  Google Scholar 

  10. Valenti VE, Abreu LC, Sato MA, Ferreria C (2010) ATZ (3-amino-1,2,4-triazole) injected into the fourth cerebral ventricle influences the Bezold-Jarisch reflex in conscious rats. Clinics 65:1339–1343

    Article  Google Scholar 

  11. Al-Salahi R, El-Tahir K-E, Alswaidan I, Lolak N, Hamidaddin M, Marzouk M (2014) Biological effects of a new set 1,2,4-triazolo[1,5-a]quinazolines on heart rate and blood pressure. Chem Cent J 8:3–10

    Article  Google Scholar 

  12. Upadhyay K, Manvar A, Loddo R, La Colla P, Virsodiya V, Trivedi J, Chaniyara R, Shah A (2013) Syntheses and in vitro biological screening of 1-aryl-10H-[1,2,4]triazolo[3′,4′:3,4][1,2,4]triazino[5,6-b]indoles. Med Chem Res 22:3675–3686

    Article  CAS  Google Scholar 

  13. Asif M (2017) Pharmacological activities of triazole analogues as antibacterial, antifungal, antiviral agents. Pharm Sci Asia 44:59–74

    Article  CAS  Google Scholar 

  14. Boechat N, Pinheiro LCS, Silva TS, Aguiar ACC, Carvalho AS, Bastos MM, Costa CCP, Pinheiro S, Pinto AC, Mendonca JS, Dutra KDB, Valverde AL, Santos-Filho OA, Ceravolo IP, Krettli AU (2012) New trifluoromethyl triazolopyrimidines as anti-plasmodium falciparum agents. Molecules 17:8285–8302

    Article  CAS  Google Scholar 

  15. Khrishna KM, Inturi B, Pujar GV, Purohit MN, Vijaykumar GS (2014) Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur J Med Chem 84:516–529

    Article  Google Scholar 

  16. Shah MH, Mhasalkar MY, Patki VM, Deliwala CV, Sheth UK (1969) New 1,2,4(H)-triazole derivatives as diuretic agents. J Pharm Sci 58:1398–1401

    Article  CAS  Google Scholar 

  17. Bera H, Dolzhenko AV, Sun L, Gupta SD, Chui WK (2013) Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chem Biol Drug Des 82:351–360

    Article  CAS  Google Scholar 

  18. Bera H, Chui WK, Gupta SD (2013) Synthesis, in vitro evaluation of thymidine phosphorylase inhibitory activity, and in silico study of 1,3,5-triazin-2,4-dione and its fused analogues. Med Chem Res 22:6010–6021

    Article  CAS  Google Scholar 

  19. Hassan GS, El-Sherbeny MA, El-Ashmawy MB, Bayoumi SM, Maarouf AR, Badria FA (2013) Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arab J Chem 10:1345–1355

    Article  Google Scholar 

  20. Wu W-N, Jiang Y-M, Fei Q, Du H-T, Yang M-F (2020) Synthesis and antifungal activity of novel 1,2,4-triazole derivatives containing an amide moiety. J Heterocycl Chem 57:1379–1386

    Article  CAS  Google Scholar 

  21. Xu J, Cao Y, Zhang J, Yu S, Zou Y, Chai X, Wu Q, Zhang D, Jiang Y, Sun Q (2011) Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. Eur J Med Chem 46:3142–3148

    Article  CAS  Google Scholar 

  22. Mange YJ, Isloor AM, Malladi S, Isloor S, Fun HK (2013) Synthesis and antimicrobial activities of some novel 1,2,4-triazole derivatives. Arab J Chem 6:177–181

    Article  CAS  Google Scholar 

  23. Huang H, Guo W, Wu W, Li CJ, Jiang H (2015) Copper-catalyzed oxidative C(sp3)-H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-triazines from amidines. Org Lett 17:2894–2897

    Article  CAS  Google Scholar 

  24. Kuang J, Chena B, Ma S (2014) Copper-mediated efficient three-component synthesis of 1,2,4-triazoles from amines and nitriles. Org Chem Front 1:186–189

    Article  Google Scholar 

  25. Blum RA, D’Andrea DT, Florentino BM, Hilligoss DM, Gardner MJ, Henry EB, Goldstein H, Schentag JJ (1991) Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 114:755–757

    Article  CAS  Google Scholar 

  26. Asif M (2016) Biological potentials of biological active triazole derivatives: a short review. Org Chem Curr Res 5:173

    Article  Google Scholar 

  27. Kumudha D, Reddy RR, Kalavathi T (2012) 1,2,4-triazoles: as biologically important agents. Int J Pharm Sci Res 3:4562–4572

    CAS  Google Scholar 

  28. Asif M (2014) A brief review on antitubercular activity of pharmacological active some triazole analogues. Glob J Res Rev 1:51–58

    Google Scholar 

  29. Can NÖ, Çevik UA, Sağlık BN, Levent S, Korkut B, Özkay Y, Kaplancıklı ZA, Koparal AS (2017) Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors. J Chem 2017

    Google Scholar 

  30. Sinha J, Kadawla M (2017) Triazoles as antimicrobial: a review. Int J Chem Stud 5:1–7

    Google Scholar 

  31. Jadhav GR, Shaikh MU, Kale RP, Shiradkar MR, Gill CH (2009) SAR study of clubbed [1,2,4]-triazolyl with fluorobenzimidazoles as antimicrobial and antituberculosis agents. Eur J Med Chem 44:2930–2935

    Article  CAS  Google Scholar 

  32. Zhang HJ, Wang XZ, Cao Q, Gong GH, Quan ZS (2017) Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg Med Chem Lett 27:4409–4414

    Article  CAS  Google Scholar 

  33. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26:1–21

    Article  CAS  Google Scholar 

  34. Bing J, Hu T, Zheng Q, Muñoz JF, Cuomo CA, Huang G (2020) Experimental evaluation identifies adaptive aneuploidy as a mechanism of fluconazole resistance in candida auris. Antimicrob Agents Chemother 65:1–14

    Article  Google Scholar 

  35. Heeres J, Meerpoel L, Lewi P (2010) Conazoles. Molecules 15:4129–4188

    Article  CAS  Google Scholar 

  36. Griffin CE, Kaye AM, Beuno FR, Kaye AD (2013) Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J 13:214–223

    Google Scholar 

  37. Masiulis S, Desai R, Uchański T, Martin IS, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu R (2019) GABAA receptor signalling mechanism revealed by structural pharmacology. Nature 565:454–459

    Article  CAS  Google Scholar 

  38. Gallwitz B (2019) Clinical use of DPP-4 inhibitors. Front Endocrinol 10:1–10

    Article  Google Scholar 

  39. Ryst EVD (2015) Maraviroc-a CCR5 antagonist for the treatment of HIV-1 infection. Front Immunol 6:1–4

    Google Scholar 

  40. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabi, A.K. et al. (2022). Overview on Medicinal Impacts of 1,2,4-Triazole Derivatives. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_5

Download citation

Publish with us

Policies and ethics