Skip to main content

Synthesis of Nanoparticles via Pulsed High-Power Laser in Liquid

  • Conference paper
  • First Online:
Tailored Functional Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 15))

  • 540 Accesses

Abstract

The focusing of a pulsed high-power laser inside a liquid medium leads to immediate plasma formation which accompanies mechanical processes of shockwaves and cavitation bubbles. The history of underwater laser interaction starts with the advent of lasers which were predominantly focused onto the laser-induced shockwaves and cavitation bubble dynamics. Eventually, the interest was divested onto the understanding of laser-induced plasma in the nanosecond, picosecond, and femtosecond domain. However, in the past few decades, the spotlight has shifted to pulsed laser interaction at target-liquid interface which not only involves plasma, shockwaves, and cavitation bubbles but escorts green-synthesis of functional nanomaterials. In view of this, the current article devotes onto the understanding of nucleation and growth of nanomaterials during pulsed laser-induced breakdown at target-liquid interface highlighting the properties of nanoparticles by tailoring the ablation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol, C 13:204–223

    Article  CAS  Google Scholar 

  2. Yang G (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698

    Article  CAS  Google Scholar 

  3. Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Func Mater 22:1333–1353

    Article  CAS  Google Scholar 

  4. Patil P, Phase D, Kulkarni S, Ghaisas S, Kulkarni S, Kanetkar S, Ogale S, Bhide V (1987) Pulsed-laser–induced reactive quenching at liquid-solid interface: aqueous oxidation of iron. Phys Rev Lett 58:238

    Article  CAS  Google Scholar 

  5. Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser produced plasma in confined geometry. J Appl Phys 68:775–784

    Article  CAS  Google Scholar 

  6. Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103

    Article  CAS  Google Scholar 

  7. Yang G (2012) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. CRC Press

    Google Scholar 

  8. Baruah PK, Singh A, Rangan L, Sharma AK, Khare A (2018) Optimization of copper nanoparticles synthesized by pulsed laser ablation in distilled water as a viable SERS substrate for karanjin. Mater Chem Phys 220:111–117

    Article  CAS  Google Scholar 

  9. Wang J, Zhang C, Zhong X, Yang G (2002) Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction. Chem Phys Lett 361:86–90

    Article  CAS  Google Scholar 

  10. Mafuné F, Kohno J-Y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Article  CAS  Google Scholar 

  11. Mafuné F, Kohno J-Y, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Article  CAS  Google Scholar 

  12. Kumar B, Thareja RK (2010) Synthesis of nanoparticles in laser ablation of aluminum in liquid. J Appl Phys 108:064906

    Article  CAS  Google Scholar 

  13. Yang G-W, Wang J-B, Liu Q-X (1998) Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys: Condens Matter 10:7923

    CAS  Google Scholar 

  14. Yang G, Wang J (2000) Carbon nitride nanocrystals having cubic structure using pulsed laser induced liquid–solid interfacial reaction. Appl Phys A 71:343–344

    Article  CAS  Google Scholar 

  15. Singh S, Mishra S, Srivastava R, Gopal R (2010) Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles. J Phys Chem C 114:17374–17384

    Article  CAS  Google Scholar 

  16. Singh S, Gopal R (2008) Synthesis of colloidal zinc oxide nanoparticles by pulsed laser ablation in aqueous media. Physica E 40:724–730

    Article  CAS  Google Scholar 

  17. Singh S, Swarnkar R, Gopal R (2009) Laser ablative approach for the synthesis of cadmium hydroxide–oxide nanocomposite. J Nanopart Res 11:1831

    Article  CAS  Google Scholar 

  18. Liu P, Cai W, Fang M, Li Z, Zeng H, Hu J, Luo X, Jing W (2009) Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology 20:285707

    Article  CAS  Google Scholar 

  19. Nath A, Laha S, Khare A (2011) Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface. Appl Surf Sci 257:3118–3122

    Article  CAS  Google Scholar 

  20. Thareja R, Shukla S (2007) Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid. Appl Surf Sci 253:8889–8895

    Article  CAS  Google Scholar 

  21. Bajaj G, Soni R (2010) Synthesis of composite gold/tin-oxide nanoparticles by nano-soldering. J Nanopart Res 12:2597–2603

    Article  CAS  Google Scholar 

  22. Bajaj G, Soni R (2010) Nanocomposite ZnO/Au formation by pulsed laser irradiation. Appl Surf Sci 256:6399–6402

    Article  CAS  Google Scholar 

  23. Baruah PK, Sharma AK, Khare A (2019) Role of confining liquids on the properties of Cu@ Cu2O nanoparticles synthesized by pulsed laser ablation and a correlative ablation study of the target surface. RSC Adv 9:15124–15139

    Article  CAS  Google Scholar 

  24. Wang C, Liu P, Cui H, Yang G (2005) Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl Phys Lett 87:201913

    Article  CAS  Google Scholar 

  25. Link S, Burda C, Mohamed M, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170

    Article  CAS  Google Scholar 

  26. Tsuji T, Iryo K, Nishimura Y, Tsuji M (2001) Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J Photochem Photobiol, A 145:201–207

    Article  CAS  Google Scholar 

  27. Tilaki R, Mahdavi S (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A 84:215–219

    Article  CAS  Google Scholar 

  28. Khan SZ, Yuan Y, Abdolvand A, Schmidt M, Crouse P, Li L, Liu Z, Sharp M, Watkins K (2009) Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J Nanopart Res 11:1421–1427

    Article  CAS  Google Scholar 

  29. Xiao J, Liu P, Wang C, Yang G (2017) External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–220

    Article  CAS  Google Scholar 

  30. Wu H, Yang R, Song B, Han Q, Li J, Zhang Y, Fang Y, Tenne R, Wang C (2011) Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 5:1276–1281

    Article  CAS  Google Scholar 

  31. Guisbiers G, Lara HH, Mendoza-Cruz R, Naranjo G, Vincent BA, Peralta XG, Nash KL (2017) Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed Nanotechnol Bio Med 13:1095–1103

    Article  CAS  Google Scholar 

  32. Hamad S, Podagatlapalli GK, Vendamani V, Nageswara Rao S, Pathak A, Tewari SP, Venugopal Rao S (2014) Femtosecond ablation of silicon in acetone: tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J Phys Chem C 118:7139–7151

    Article  CAS  Google Scholar 

  33. Blakemore JD, Gray HB, Winkler JR, Müller AM (2013) Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal 3:2497–2500

    Article  CAS  Google Scholar 

  34. Xu X, Duan G, Li Y, Liu G, Wang J, Zhang H, Dai Z, Cai W (2013) Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+, Hg2+. ACS Appl Mater Interfaces 6:65–71

    Article  CAS  Google Scholar 

  35. Muniz-Miranda M, Gellini C, Giorgetti E (2011) Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J Phys Chem C 115:5021–5027

    Article  CAS  Google Scholar 

  36. Rao SV, Podagatlapalli GK, Hamad S (2014) Ultrafast laser ablation in liquids for nanomaterials and applications. J Nanosci Nanotechnol 14:1364–1388

    Article  CAS  Google Scholar 

  37. Ibrahimkutty S, Wagener P, Menzel A, Plech A, Barcikowski S (2012) Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle x-ray scattering. Appl Phys Lett 101:103104

    Article  CAS  Google Scholar 

  38. Wagener P, Ibrahimkutty S, Menzel A, Plech A, Barcikowski S (2013) Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys Chem Chem Phys 15:3068–3074

    Article  CAS  Google Scholar 

  39. De Giacomo A, Dell’Aglio M, Santagata A, Gaudiuso R, De Pascale O, Wagener P, Messina G, Compagnini G, Barcikowski S (2013) Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys Chem Chem Phys 15:3083–3092

    Article  Google Scholar 

  40. Lam J, Amans D, Chaput F, Diouf M, Ledoux G, Mary N, Masenelli-Varlot K, Motto-Ros V, Dujardin C (2014) γ-Al 2 O 3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis. Phys Chem Chem Phys 16:963–973

    Article  CAS  Google Scholar 

  41. Nath A, Sharma P, Khare A (2018) Laser-induced metastable phases in liquids. Laser Phys Lett 15:026001

    Article  Google Scholar 

  42. Urry DW (1982) Henry Eyring (1901–1981): a 20th century physical chemist and his models. Mathematical Modelling 3:503–522

    Article  Google Scholar 

  43. Chen S-Y, Shen P (2002) Laser ablation condensation of α−PbO2-Type TiO2. Phys Rev Lett 89:096106

    Article  CAS  Google Scholar 

  44. Arlt T, Bermejo M, Blanco M, Gerward L, Jiang J, Olsen JS, Recio J (2000) High-pressure polymorphs of anatase TiO2. Phys Rev B 61:14414

    Article  CAS  Google Scholar 

  45. Nath A, Khare A (2011) Effect of focusing conditions on laser-induced shock waves at titanium–water interface. Appl Opt 50:3275–3281

    Article  CAS  Google Scholar 

  46. Withers AC, Essene EJ, Zhang Y (2003) Rutile/TiO2 II phase equilibria. Contrib Miner Petrol 145:199–204

    Article  CAS  Google Scholar 

  47. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  CAS  Google Scholar 

  48. Swamy V, Kuznetsov A, Dubrovinsky LS, McMillan PF, Prakapenka VB, Shen G, Muddle BC (2006) Size-dependent pressure-induced amorphization in nanoscale TiO 2. Phys Rev Lett 96:135702

    Article  CAS  Google Scholar 

  49. Hearne G, Zhao J, Dawe A, Pischedda V, Maaza M, Nieuwoudt M, Kibasomba P, Nemraoui O, Comins J, Witcomb M (2004) Effect of grain size on structural transitions in anatase TiO2: A Raman spectroscopy study at high pressure. Phys Rev B 70:134102

    Article  CAS  Google Scholar 

  50. Baruah PK, Sharma AK, Khare A (2018) Effect of laser energy on the SPR and size of silver nanoparticles synthesized by pulsed laser ablation in distilled water. In: AIP conference proceedings. AIP Publishing LLC, pp 050036

    Google Scholar 

  51. Shen P, Liu Y, Long Y, Shen L, Kang B (2016) High-performance polymer solar cells enabled by copper nanoparticles-induced plasmon resonance enhancement. J Phys Chem C 120:8900–8906

    Article  CAS  Google Scholar 

  52. Lee Y, Choi J-R, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604

    Article  CAS  Google Scholar 

  53. Guo X, Hao C, Jin G, Zhu HY, Guo XY (2014) Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light. Angew Chem Int Ed 53:1973–1977

    Article  CAS  Google Scholar 

  54. Rai M, Ingle AP, Gupta I, Brandelli A (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm 496:159–172

    Article  CAS  Google Scholar 

  55. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  56. Zhang Y, Zhang Q, Ouyang X, Lei DY, Zhang AP, Tam H-Y (2018) Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing. ACS Nano 12:9913–9921

    Article  CAS  Google Scholar 

  57. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24

    Article  CAS  Google Scholar 

  58. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5:85–97

    Article  CAS  Google Scholar 

  59. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  60. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  61. Nishanthi S, Iyyapushpam S, Sundarakannan B, Subramanian E, Padiyan DP (2015) Plasmonic silver nanoparticles loaded titania nanotube arrays exhibiting enhanced photoelectrochemical and photocatalytic activities. J Power Sources 274:885–893

    Article  CAS  Google Scholar 

  62. Yuranova T, Rincon A, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol, A 161:27–34

    Article  CAS  Google Scholar 

  63. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Lett 2:32

    Article  Google Scholar 

  64. Li X, Ren X, Zhang Y, Choy WC, Wei B (2015) An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS. Nanoscale 7:11291–11299

    Article  CAS  Google Scholar 

  65. Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C (2016) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266

    Article  CAS  Google Scholar 

  66. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101

    Article  CAS  Google Scholar 

  67. Baruah PK, Raman MA, Chakrabartty I, Rangan L, Sharma AK, Khare A (2018) Antibacterial effect of silk treated with silver and copper nanoparticles synthesized by pulsed laser ablation in distilled water. In: AIP conference proceedings. AIP Publishing, pp 030064

    Google Scholar 

  68. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharmaceut Sci 9:385

    CAS  Google Scholar 

  69. Reverberi A, Kuznetsov N, Meshalkin V, Salerno M, Fabiano B (2016) Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor Found Chem Eng 50:59–66

    Article  CAS  Google Scholar 

  70. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79

    Article  CAS  Google Scholar 

  71. Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15:3027–3046

    Article  CAS  Google Scholar 

  72. Luo N, Tian X, Xiao J, Hu W, Yang C, Li L, Chen D (2013) High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol. J Appl Phys 113:164306

    Article  CAS  Google Scholar 

  73. Gondal M, Drmosh Q, Yamani Z, Saleh T (2009) Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256:298–304

    Article  CAS  Google Scholar 

  74. Sun R-D, Tsuji T (2015) Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid. Appl Surf Sci 348:38–44

    Article  CAS  Google Scholar 

  75. Gondal M, Saleh TA, Drmosh Q (2012) Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci 258:6982–6986

    Article  CAS  Google Scholar 

  76. Intartaglia R, Bagga K, Scotto M, Diaspro A, Brandi F (2012) Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optic Mater Exp 2:510–518

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alika Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, A., Baruah, P.K., Khare, A. (2022). Synthesis of Nanoparticles via Pulsed High-Power Laser in Liquid. In: Mukherjee, K., Layek, R.K., De, D. (eds) Tailored Functional Materials. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-19-2572-6_41

Download citation

Publish with us

Policies and ethics