Skip to main content
  • 135 Accesses

Abstract

This chapter introduces the status quo in terms of carbon dioxide (CO2) emissions, CO2 recovery technology, and its research status and development in converters, electric arc furnaces (EAF), and refining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang K, Wang C, Lv XD et al (2006) Abatement potential of CO2 emissions from China’s iron and steel industry based on LEAP[J]. J Tsinghua Univ (Sci & Tech) 46(12):1982–1986

    Google Scholar 

  2. Zhang CX, Hu CQ, Yan DX et al (2007) GHG emission and its mitigation of steel industry[J]. China Metall 17(1):7–12

    Google Scholar 

  3. Cai JJ, Wang JJ, Zhang Q et al (2008) Material flows and energy flows in iron & steel factory and their influence on CO2 emissions[J]. Res Environ Sci 21(1):196–200

    Google Scholar 

  4. Zhou WH, Chen LY (2008) Progress of CO2 emission reduction technologies & measures abroad[J]. Chin For Energy 13(3):7–13

    Google Scholar 

  5. Li ZZ, Zhu R, Liu RZ et al (2015) Study on the characteristics of CO2 and the effect of CO2 on material and energy in steelmaking process[J]. Ind Heat 44(6):27–29

    Google Scholar 

  6. Zhu R, Bi XR, Lv M (2012) Application and development of carbon dioxide in the steelmaking process[J]. Iron Steel 47(3):1–5

    Google Scholar 

  7. Li HG, Li KX (2006) Recycling method of waste gas in industrial kiln[J]. Energy Conserv 2:47–50

    Google Scholar 

  8. Liu CJ (2004) Ecovery of CO2 from Grong Kiln tail gas by solvent adsorption[J]. Light Metal 4:13–16

    Google Scholar 

  9. Shen HS, Zhang YC, Chen SY et al (2010) Study on absorption of carbon dioxide by blended amines in packed tower[J]. Mod Chem Ind 30(2):70–73

    Google Scholar 

  10. Cheng AP (1994) Pressure change adsorption process recycling lime kiln gas to produce liquid carbon dioxide[J]. Environ Dev 9(4):350–353

    Google Scholar 

  11. Liu YS, Zheng XG, Liu WH et al (2009) Low concentration carbon dioxide enrichment from flue gas by pressure swing adsorption[J]. Mod Chem Ind 29(7):76–79

    Google Scholar 

  12. Lu SJ, Yang XP, Li QF et al (2009) Advance of carbon dioxide recovery from flue gas[J]. Appl Chem Ind 38(8):1207–1209

    Google Scholar 

  13. Jin RJ, Zhu R, Feng LX, et al (2007) Experimental stduy of steelmaking with CO2 and O2 mixed blowing[J]. J Univ Sci Technol Beij 29(S1):77–80

    Google Scholar 

  14. Yin ZJ, Zhu R, Yi C et al (2009) Fundamental research on controlling BOF dust by COMI steeel-making process[J]. Iron Steel 44(10):92–94

    Google Scholar 

  15. Yi C, Zhu R, Chen BY et al (2009) Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process[J]. ISIJ Int 49(11):1694–1699

    Article  Google Scholar 

  16. Zhu R, Bi XR, Lv M et al (2011) Research on steelmaking dust based on difference of Mn, Fe and Mo vapor pressure[J]. Adv Mater Res 284–286:1216–1222

    Article  Google Scholar 

  17. Yi C, Zhu R, Yin ZJ et al (2009) Experimental research of COMI steelmaking process based on 30 t converter[J]. Chin J Process Eng 9(S1):222–225

    Google Scholar 

  18. Ning XJ, Yin ZJ, Yi C et al (2009) Experimental research on dust reduction in steelmaking by CO2[J]. Steel Making 25(5):32–34

    Google Scholar 

  19. Zhu R, Yi C, Chen BY et al (2010) Inner circulation research of steelmaking dust by COM I steelmaking process[J]. Energy Metallurg Ind 29(1):48–51

    Google Scholar 

  20. Bi XR, Liu RZ, Zhu R et al (2010) Research on mechanism of dust generation in converter. Ind Heat 39(6):13–16

    Google Scholar 

  21. Zhang W, Li ZZ, Zhu R et al (2015) Exprimental study of CO2 blowing in steelmaking process[J]. Ind Heat 44(2):41–44

    Google Scholar 

  22. Lv M, Zhu R, Wei XY et al (2012) Research on top and bottom mixed blowing CO2 in converter steelmaking process[J]. Steel Res Int 83(1):11–15

    Article  Google Scholar 

  23. Lv M, Zhu R, Bi XL et al (2011) Application research of carbon dioxide in BOF steelmaking process[J]. J Univ Sci Technol Beijing 33(S1):126–130

    Google Scholar 

  24. Lv M, Zhu R, Bi XL, et al (2011) Fundamental research on dephosphorization of BOF by COMI steelmaking process[J]. Iron Steel 46(8):31–35

    Google Scholar 

  25. Blostein P, Patten P, Gortan D, et al (1990) CO2 stirring in the converter at B.H.P.-Whyalla[J]. Steelmaking Conf Proc 73:315–318

    Google Scholar 

  26. Wang SL (1986) The metallurgical behavior of reblowing the converter foundation[J]. Steel Making 2(4):24–30

    Google Scholar 

  27. Li H, Qu Y (2010) Discussion on limestone addition instead of lime for energy-saving and emission reduction in BOF steelmaking[J]. China Metall 20(9):45–48

    Google Scholar 

  28. Li H, Feng J, Li YQ et al (2011) Thermodynamic analysis of limestone decomposition and CO2 oxidation effect in the early stage of BOF steelmaking[C]. Special Steel Annual Meeting of China Metal Society, Wu Hu

    Google Scholar 

  29. Wang H, Zhu R, Liu RZ et al (2014) Application Research of Carbon Dioxide in EAF Bottom Blowing(J). Industrial Heating 43(2):12–14

    Google Scholar 

  30. Fruehan RJ (1988) Potential benefits of gas stirring in an electric arc furnace[C]. Electr Furnace Conf Proc 259–266

    Google Scholar 

  31. Anderson SH, Foulard J, Lutgen N (1989) Inert gas technology for the protection of low nitrogen steel[C]. Electr Furnace Conf Proc 365–375

    Google Scholar 

  32. Gu Y, Wang H, Zhu R et al (2014) Study on experiment and mechanism of bottom blowing CO2 during the LF refining process[J]. Steel Res Int 85(4):589–598

    Article  Google Scholar 

  33. Dong K, Zhu R, Liu RZ et al (2014) Influence of bottom blowing CO2 in LF on molten steel quality and erosion of ventilated bricks[J]. J Univ Sci Technol Beijing 36(S1):226–229

    Google Scholar 

  34. Hagerty LJ, Rossi J (1989) Shrouding of continuous billet casting at auburn steel with argon, nitrogen, and carbon dioxide[C]. Electr Furnace Conf Proc 44:153–159

    Google Scholar 

  35. Li Q, Wang H, Zhu R et al (2015) Experimental research on using CO2 as shielding gas in continuous casting[J]. Contin Cast 40(2):5–9

    Google Scholar 

  36. Bruce T, Weisang F, Allibert M (1987) Effects of CO2 stirring in a ladle[C]. Electr Furnace Conf Proc

    Google Scholar 

  37. Anderson SH, Rockwell D (1993) Cost and quality benefits of carbon dioxide in the AOD[J]. Iron Steelmaker 20(2):27–30

    Google Scholar 

  38. Anderson SH, Douglas CL, Bermel CL (1990) Use of CO2 in the AOD[C]. Electr Furnace Conf Proc

    Google Scholar 

  39. Anderson SH, Urban DR (1989) Cost and quality effectiveness of carbon dioxide in steelmills[C]. Electr Furnace Conf Proc

    Google Scholar 

  40. Nels DR, Henry HB (1975) Use of CO2 in argon-oxygen refining of molten metal: U.S. Patent, 3861888[P]

    Google Scholar 

  41. Wang HJ (2010) Investigations on the oxidation of iron-chromium and iron-vanadium molten alloys (Doctoral Thesis) [D]. Royal Institute of Technology, Stockholm

    Google Scholar 

  42. Wang HJ, Teng LD, Seetharaman S (2012) Investigation of the oxidation kinetics of Fe-Cr and Fe-Cr-C melts under controlled oxygen partial pressures[J]. Metall Mater Trans B 43(6):1476–1487

    Article  Google Scholar 

  43. Wang HJ, Teng LD, Zhang JY et al (2010) Oxidation of Fe-V melts under CO2-O2 gas mixtures[J]. Metall Mater Trans B 41(5):1042–1051

    Article  Google Scholar 

  44. Wang HJ, Viswanathan N, Ballal NB et al (2010) Modelling of physico- chemical phenomena between gas inside a bubble and liquid metal duringinjection of oxidant gas[J]. Int J Chem Reactor Eng 8(1):47–54

    Article  Google Scholar 

  45. Wang HJ, Viswanathan N, Ballal NB et al (2009) Modeling of reactions between gas bubble and molten metal bath-experimental validation in the case of decarburization of Fe-Cr-C melts[J]. High Temp Mater Processes (London) 28(6):407–419

    Article  Google Scholar 

  46. Bi XR, Zhu R, Liu RZ et al (2012) Fundamental Research on CO2 and O2 mixed injection stainless steelmaking process[J]. Steelmaking 28(2):67–70

    Google Scholar 

  47. Li Q, Liu RZ, Zhu R et al (2015) Research on decarburization and chromium conservation by blowing carbon dioxide[J]. Ind Heat 44(4):24–26

    Google Scholar 

  48. ANGANG Steel Company Limited (2011) A smelting method for producing stainless steel by AOD blow CO2: China, 102146499A [P]

    Google Scholar 

  49. Dong XD (2011) Preliminary experiments on fast absorption of CO2 by steel slag of converter: China, 102146499A [P]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, R. (2023). Introduction. In: Theory and Practice of CO2 Utilization in Steelmaking. Springer, Singapore. https://doi.org/10.1007/978-981-19-2545-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2545-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2544-3

  • Online ISBN: 978-981-19-2545-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics