Skip to main content

Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective

  • Conference paper
  • First Online:
Ubiquitous Intelligent Systems (ICUIS 2021)

Abstract

Nowadays, Breast cancer has risen to become one of the most prominent causes of death in recent years. Among all malignancies, this is the most frequent and the major cause of death for women globally. Manually diagnosing this disease requires a good amount of time and expertise. Breast cancer detection is time-consuming, and the spread of the disease can be reduced by developing machine-based breast cancer predictions. In Machine learning, the system can learn from prior instances and find hard-to-detect patterns from noisy or complicated data sets using various statistical, probabilistic, and optimization approaches. This work compares several machine learning algorithms' classification accuracy, precision, sensitivity, and specificity on a newly collected dataset. In this work Decision tree, Random Forest, Logistic Regression, Naïve Bayes, and XGBoost, these five machine learning approaches have been implemented to get the best performance on our dataset. This study focuses on finding the best algorithm that can forecast breast cancer with maximum accuracy in terms of its classes. This work evaluated the quality of each algorithm's data classification in terms of efficiency and effectiveness. And also compared with other published work on this domain. After implementing the model, this study achieved the best model accuracy, 94% on Random Forest and XGBoost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Key, P.K. Verkasalo, E. Banks, Epidemiology of breast cancer. Lancet Oncol. 2(3), 133–140 (2001)

    Article  Google Scholar 

  2. U.S. Cancer Statistics Working Group (2012) United States Cancer Statistics: 1999–2008 Incidence and Mortality Web-based Report. Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute, Atlanta (GA)

    Google Scholar 

  3. V. Chaurasia, S. Pal, Data mining techniques: to predict and resolve breast cancer survivability. Int. J. Comput. Sci. Mob. Comput. IJCSMC 3(1), 10–22 (2014)

    Google Scholar 

  4. A. Djebbari, Z. Liu, S. Phan, F. Famili, An ensemble machine learning approach to predict survival in breast cancer. Int. J. Comput. Biol. Drug Des. 1(3), 275–294 (2008)

    Article  Google Scholar 

  5. S. Aruna, S.P. Rajagopalan, L.V. Nandakishore, Knowledge based analysis of various statistical tools in detecting breast cancer. Comput. Sci. Inform. Technol. 2(2011), 37–45 (2011)

    Google Scholar 

  6. A.F.M. Agarap, On breast cancer detection: an application of machine learning algorithms on the Wisconsin diagnostic dataset, in Proceedings of the 2nd International Conference on Machine Learning and Soft Computing (2018, February), pp. 5–9

    Google Scholar 

  7. V. Chaurasia, S. Pal, B. Tiwari, Prediction of benign and malignant breast cancer using data mining techniques. J. Algorithms Comput. Technol. 12(2), 119–126 (2018)

    Article  Google Scholar 

  8. N. Fatima, L. Liu, S. Hong, H. Ahmed, Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8, 150360–150376 (2020)

    Article  Google Scholar 

  9. A. Toprak, Extreme learning machine (ELM)-based classification of benign and malignant cells in breast cancer. Med. Sci. Monitor Int. Med. J. Exp. Clin. Res. 24, 6537 (2018)

    Google Scholar 

  10. D.S. Jacob, R. Viswan, V. Manju, L. PadmaSuresh, S. Raj, A survey on breast cancer prediction using data mining techniques, in 2018 Conference on Emerging Devices and Smart Systems (ICEDSS) (IEEE, 2018, March), pp. 256–258

    Google Scholar 

  11. T. Padhi, P. Kumar, Breast cancer analysis using WEKA, in 2019 9th International Conference on Cloud Computing, Data Science and Engineering (Confluence) (IEEE, 2019, January), pp. 229–232

    Google Scholar 

  12. T. Thomas, N. Pradhan, V.S. Dhaka, Comparative analysis to predict breast cancer using machine learning algorithms: a survey, in 2020 International Conference on Inventive Computation Technologies (ICICT) (IEEE, 2020, February), pp. 192–196

    Google Scholar 

  13. F. Livingston, Implementation of Breiman’s random forest machine learning algorithm. ECE591Q Mach. Learn. J. Paper 1–13 (2005)

    Google Scholar 

  14. R. Mitchell, E. Frank, Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci. 3, e127 (2017)

    Article  Google Scholar 

  15. M. Shalini, S. Radhika, Machine learning techniques for prediction from various breast cancer datasets, in 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII) (IEEE, 2020, February), pp. 1–5

    Google Scholar 

  16. S. Kabiraj, M. Raihan, N. Alvi, M. Afrin, L. Akter, S.A. Sohagi, E. Podder, Breast cancer risk prediction using XGBoost and random forest algorithm, in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (IEEE , 2020, July), pp. 1–4

    Google Scholar 

  17. S. Marne, S. Churi, M. Marne, Predicting breast cancer using effective classification with decision tree and k means clustering technique, in 2020 International Conference on Emerging Smart Computing and Informatics (ESCI) (IEEE, 2020, March), pp. 39–42

    Google Scholar 

  18. Y. Khourdifi, M. Bahaj, Applying best machine learning algorithms for breast cancer prediction and classification, in 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) (IEEE, 2018, December), pp. 1–5

    Google Scholar 

  19. M.S. Yarabarla, L.K. Ravi, A. Sivasangari, Breast cancer prediction via machine learning, in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (IEEE, 2019, April), pp. 121–124

    Google Scholar 

  20. P.S.S. Varma, S. Kumar, K.S.V. Reddy, Machine learning based breast cancer visualization and classification, in 2021 International Conference on Innovative Trends in Information Technology (ICITIIT) (IEEE, 2021, February), pp. 1–6

    Google Scholar 

  21. A. Sharma, S. Kulshrestha, S. Daniel, Machine learning approaches for breast cancer diagnosis and prognosis, in 2017 International Conference on Soft Computing and its Engineering Applications (icSoftComp) (IEEE, 2017, December), pp. 1–5

    Google Scholar 

  22. S. Sharma, A. Aggarwal, T. Choudhury, Breast cancer detection using machine learning algorithms, in 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS) (IEEE, 2018, December), pp. 114–118

    Google Scholar 

  23. G.I. Webb, E. Keogh, R. Miikkulainen, Naïve Bayes. Encyclopedia Mach. Learn. 15, 713–714 (2010)

    Google Scholar 

  24. T. Vijayakumar, Posed inverse problem rectification using novel deep convolutional neural network. J. Innov. Image Process. (JIIP) 2(03), 121–127 (2020)

    Article  Google Scholar 

  25. A.P. Pandian, Review on image recoloring methods for efficient naturalness by coloring data modeling methods for low visual deficiency. J. Artif. Intell. 3(03), 169–183 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taminul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islam, T., Kundu, A., Islam Khan, N., Chandra Bonik, C., Akter, F., Jihadul Islam, M. (2022). Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective. In: Karuppusamy, P., García Márquez, F.P., Nguyen, T.N. (eds) Ubiquitous Intelligent Systems. ICUIS 2021. Smart Innovation, Systems and Technologies, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-2541-2_23

Download citation

Publish with us

Policies and ethics