Skip to main content

Optimization Algorithms Surpassing Metaphor

  • Chapter
  • First Online:
Computational Intelligence for Water and Environmental Sciences

Abstract

Achieving novel systems with optimal performance has been converted into a critical preoccupation amongst engineers and scientists across a wide range of fields, whereby optimization has played a crucial role in current research. Indeed, optimizers find the collection of variables to reach the optimal amount of cost functions by considering the possible domains of the variables restricted. algorithms, of Meta‐heuristic and evolutionary, inspired by natural behaviour, mathematical foundations, and physics, are considered optimization techniques commonly hired to determine optimal solutions. Notwithstanding the traditional optimization methods, comprised of linear, nonlinear, integer, and dynamic programming, algorithms, of meta‐heuristic and evolutionary, provide reliable modeling results in various engineering subject matters like real‐world and complex obstacles. In addition, although the number of algorithms based on natural behaviours has increased, the majority of them deal with some ordeals such as being stuck in local optimal results. Hence, these ordeals pave the way for the advent of new mathematical, population-based techniques. In this chapter, three powerful metaphor-free, population-based optimization approaches are introduced, being categorized into gradient-based optimizer (GBO), Runge Kutta optimizer (RUN), and differential evolution (DE). Each technique is evaluated in terms of the basic concept; the algorithms are then described based on mathematical statements. In the last part, the pseudo-code of the methods and the guidelines for coding are presented. This chapter is intended for those who have an interest in engineering optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2019). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861–3884.

    Article  Google Scholar 

  • Ahmadianfar, I., Samadi-Koucheksaraee, A., & Bozorg-Haddad, O. (2017). Extracting optimal policies of hydropower multi-reservoir systems utilizing enhanced differential evolution algorithm. Water Resources Management, 31(14), 4375–4397.

    Article  Google Scholar 

  • Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new Metaheuristic optimization algorithm. Information Sciences, 540, 131–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 115079.

    Google Scholar 

  • Akay, B., & Karaboga, D. (2012). A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 192, 120–142.

    Article  Google Scholar 

  • Alsattar, H., Zaidan, A., & Zaidan, B. (2020). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 53(3), 2237–2264.

    Article  Google Scholar 

  • Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23(3), 715–734.

    Article  Google Scholar 

  • Askarzadeh, A. (2014). Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation, 19(4), 1213–1228.

    Article  MathSciNet  MATH  Google Scholar 

  • Ba, A. F., Huang, H., Wang, M., Ye, X., Gu, Z., Chen, H., & Cai, X. (2020). Levy-based antlion-inspired optimizers with orthogonal learning scheme. Engineering with computers, 1–22.

    Google Scholar 

  • Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms. Wiley.

    Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Dorigo, M. (1999). Swarm intelligence. Springer.

    Google Scholar 

  • Cao, B., Zhao, J., Gu, Y., Fan, S., & Yang, P. (2019). Security-aware industrial wireless sensor network deployment optimization. IEEE Transactions on Industrial Informatics, 16(8), 5309–5316.

    Article  Google Scholar 

  • Cao, B., Zhao, J., Gu, Y., Ling, Y., & Ma, X. (2020). Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm and Evolutionary Computation, 53, 100626.

    Article  Google Scholar 

  • Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S., & Kumar, P. (2020). Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Transactions on Fuzzy Systems, 28(11), 2702–2710.

    Article  Google Scholar 

  • Clerc, M. (2010). Particle swarm optimization (Vol. 93). Wiley.

    Google Scholar 

  • Das, S., & Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  • de Lacerda, M. G. P., de Araujo Pessoa, L. F., de Lima Neto, F. B., Ludermir, T. B., & Kuchen, H. (2020). A systematic literature review on general parameter control for evolutionary and swarm-based algorithms. Swarm and Evolutionary Computation, 100777.

    Google Scholar 

  • Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196.

    Article  Google Scholar 

  • Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2–3), 243–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences, 217, 65–77.

    Article  MathSciNet  Google Scholar 

  • England, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. The Computer Journal, 12(2), 166–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. Advances in Engineering Software, 37(2), 106–111.

    Article  Google Scholar 

  • Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151–166.

    Article  Google Scholar 

  • Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190.

    Article  Google Scholar 

  • Fei, X., Wang, J., Ying, S., Hu, Z., & Shi, J. (2020). Projective parameter transfer based sparse multiple empirical kernel learning machine for diagnosis of brain disease. Neurocomputing, 413, 271–283.

    Article  Google Scholar 

  • Fu, X., Pace, P., Aloi, G., Yang, L., & Fortino, G. (2020). Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Computer Networks, 177, 107327.

    Article  Google Scholar 

  • Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1), 1–18.

    Article  Google Scholar 

  • Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184.

    Article  MathSciNet  Google Scholar 

  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

    Google Scholar 

  • Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.

    Article  Google Scholar 

  • Hu, J., Chen, H., Heidari, A. A., Wang, M., Zhang, X., Chen, Y., & Pan, Z. (2021). Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684.

    Article  Google Scholar 

  • Jeong, S., & Kim, P. (2019). A population-based optimization method using Newton fractal. Complexity, 2019.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95-International Conference on Neural Networks.

    Google Scholar 

  • Kiran, M. S. (2015). TSA: Tree-seed algorithm for continuous optimization. Expert Systems with Applications, 42(19), 6686–6698.

    Article  Google Scholar 

  • Koza, J. R., & Rice, J. P. (1992). Automatic programming of robots using genetic programming. Paper presented at the AAAI.

    Google Scholar 

  • Kumar, A., & Bawa, S. (2019). Generalized ant colony optimizer: Swarm-based meta-heuristic algorithm for cloud services execution. Computing, 101(11), 1609–1632.

    Article  MathSciNet  Google Scholar 

  • Kutta, W. (1901). Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math. Phys., 46, 435–453.

    MATH  Google Scholar 

  • Lampinen, J., & Storn, R. (2004). Differential evolution. In New optimization techniques in engineering (pp. 123–166): Springer.

    Google Scholar 

  • Li, Y., Liu, Y., Cui, W.-G., Guo, Y.-Z., Huang, H., & Hu, Z.-Y. (2020). Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(4), 782–794.

    Article  Google Scholar 

  • Liu, Y., Yang, C., & Sun, Q. (2020). Thresholds based image extraction schemes in big data environment in intelligent traffic management. IEEE Transactions on Intelligent Transportation Systems.

    Google Scholar 

  • Luo, J., Chen, H., Xu, Y., Huang, H., & Zhao, X. (2018). An improved grasshopper optimization algorithm with application to financial stress prediction. Applied Mathematical Modelling, 64, 654–668.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Z., Xie, Y., Ji, L., Cai, Y., Yang, Z., & Huang, G. (2021). Regional agricultural water resources management with respect to fuzzy return and energy constraint under uncertainty: An integrated optimization approach. Journal of Contaminant Hydrology, 103863.

    Google Scholar 

  • Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea lion optimization algorithm. Sea, 10(5).

    Google Scholar 

  • Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  • Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  • Naruei, I., & Keynia, F. (2021). Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Engineering with computers, 1–32.

    Google Scholar 

  • Özban, A. Y. (2004). Some new variants of Newton’s method. Applied Mathematics Letters, 17(6), 677–682.

    Article  MathSciNet  MATH  Google Scholar 

  • Patil, P., & Verma, U. (2006). Numerical computational methods. Alpha Science International Ltd.

    Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Google Scholar 

  • Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: A practical approach to global optimization. Springer Science & Business Media.

    Google Scholar 

  • Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen, 46(2), 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Samadi-koucheksaraee, A., Ahmadianfar, I., Bozorg-Haddad, O., & Asghari-pari, S. A. (2019). Gradient evolution optimization algorithm to optimize reservoir operation systems. Water Resources Management, 33(2), 603–625.

    Article  Google Scholar 

  • Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Article  Google Scholar 

  • Shadravan, S., Naji, H., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20–34.

    Article  Google Scholar 

  • Sharma, H., Hazrati, G., & Bansal, J. C. (2019). Spider monkey optimization algorithm. In Evolutionary and swarm intelligence algorithms (pp. 43–59). Springer.

    Google Scholar 

  • Song, J., Zhong, Q., Wang, W., Su, C., Tan, Z., & Liu, Y. (2020). FPDP: Flexible privacy-preserving data publishing scheme for smart agriculture. IEEE Sensors Journal.

    Google Scholar 

  • Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces (Vol. 3). ICSI Berkeley.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Talebi, S., & Reisi, F. (2021). A clustering approach for EOS lumping—Using evolutionary-based metaheuristic optimization algorithms. Journal of Petroleum Science and Engineering, 207, 109149.

    Article  Google Scholar 

  • Tan, W.-H., & Mohamad-Saleh, J. (2020). Normative fish swarm algorithm (NFSA) for optimization. Soft Computing, 24(3), 2083–2099.

    Article  Google Scholar 

  • Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673–686.

    Article  Google Scholar 

  • Wang, G.-G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31(7), 1995–2014.

    Article  Google Scholar 

  • Weerakoon, S., & Fernando, T. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, L., & Chen, H. (2019). Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network. Neural Computing and Applications, 31(9), 4463–4478.

    Article  Google Scholar 

  • Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.

    Article  Google Scholar 

  • Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Paper presented at the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

    Google Scholar 

  • Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102.

    Article  Google Scholar 

  • Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Review, 37(4), 531–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, C., Heidari, A. A., & Chen, H. (2020). A quantum-behaved simulated annealing algorithm-based moth-flame optimization method. Applied Mathematical Modelling, 87, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F., & Chen, H. (2021). SGOA: annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers, 1–28.

    Google Scholar 

  • Zeng, H.-B., Liu, X.-G., & Wang, W. (2019). A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Applied Mathematics and Computation, 354, 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958.

    Article  Google Scholar 

  • Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Liang, G., Muhammad, K., Chen, H. (2020). Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowledge-Based Systems, 106510.

    Google Scholar 

  • Zheng, L., & Zhang, X. (2017). Modeling and analysis of modern fluid problems. Academic Press.

    Google Scholar 

  • Zitzler, E., & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength pareto approach. TIK-report, 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvin Samadi-Koucheksaraee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samadi-Koucheksaraee, A., Shirvani-Hosseini, S., Ahmadianfar, I., Gharabaghi, B. (2022). Optimization Algorithms Surpassing Metaphor. In: Bozorg-Haddad, O., Zolghadr-Asli, B. (eds) Computational Intelligence for Water and Environmental Sciences. Studies in Computational Intelligence, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-19-2519-1_1

Download citation

Publish with us

Policies and ethics