Skip to main content

Comparative Study of Neural Networks (G/C/RNN) and Traditional Machine Learning Models on EEG Datasets

  • 141 Accesses

Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Background: EEG provides researchers with an opportunity to study neural correlates in terms of temporal connectivity. This connectivity can shed light on the possible network topology between a healthy person versus a patient or help differentiate between two different groups (experts and non-experts). Purpose: With the help of machine learning models, the difference in network topology can be used to understand the neural correlations between healthy control and a patient with ease compared to traditional EEG analysis. Further, a comparative analysis between the different spectral connectivity measures provides the best suitable measure for the study. Methods: EEG data from a meditation study (n = 31) and Parkinson's study (n = 24) containing the resting-state EEG recordings are utilized here. The EEG data is converted to spectral connectivity: coherence, which becomes the input for the machine learning models, support vector machine, k-means clustering, deep convolution neural networks, recurrent neural networks, and graph neural networks. Results: Classification accuracies of SVM and RNN are 56.585 and 56%, whereas D-CNN provides an accuracy of 59.5%. Both (~ 7%) k-means and GNN failed in the off-the-shelf approach. Conclusion: The comparative study shows the application capabilities of neural networks machine learning with commonly used machine learning models and the impact the various connectivity measures have on model accuracy.

Keywords

  • EEG
  • Meditation
  • Parkinson’s disease
  • Classification
  • Machine learning
  • Support vector machine
  • k-means clustering
  • Graph neural networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-2358-6_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-2358-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. A.M. Bastos, J.M. Schoffelen, A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 1–23 (2016). https://doi.org/10.3389/fnsys.2015.00175

    CrossRef  Google Scholar 

  2. M. Soufineyestani, D. Dowling, A. Khan, Electroencephalography (EEG) technology applications and available devices. Appl. Sci. 10, 1–23 (2020). https://doi.org/10.3390/app10217453

    CrossRef  Google Scholar 

  3. Z. Li, L. Zhang, F. Zhang, et al., Demystifying signal processing techniques to extract resting-state EEG features for psychologists. Brain. Sci. Adv. 6:189–209 (2020). https://doi.org/10.26599/bsa.2020.9050019

  4. A. Berkovich-Ohana, M. Harel, A. Hahamy et al., Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. Neuroimage 135, 125–134 (2016). https://doi.org/10.1016/j.neuroimage.2016.04.024

    CrossRef  Google Scholar 

  5. T. van Eimeren, O. Monchi, B. Ballanger, A.P. Strafella, Dysfunction of the default mode network in Parkinson disease. Arch. Neurol. 66, 877–883 (2009). https://doi.org/10.1001/archneurol.2009.97

    CrossRef  Google Scholar 

  6. S. Corchs, G. Chioma, R. Dondi et al., Computational methods for resting-state EEG of patients with disorders of consciousness. Front. Neurosci. 13, 1–7 (2019). https://doi.org/10.3389/fnins.2019.00807

    CrossRef  Google Scholar 

  7. Y. Bai, X. Xia, X. Li, A review of resting-state electroencephalography analysis in disorders of consciousness. Front. Neurol. 8, (2017). https://doi.org/10.3389/fneur.2017.00471

  8. C.S. Deolindo, M.W. Ribeiro, M.A. Aratanha et al., A critical analysis on characterizing the meditation experience through the electroencephalogram. Front. Syst. Neurosci. 14, 1–29 (2020). https://doi.org/10.3389/fnsys.2020.00053

    CrossRef  Google Scholar 

  9. A. Barrós-Loscertales, S.E. Hernández, Y. Xiao, et al., Resting state functional connectivity associated with Sahaja Yoga meditation. Front. Hum. Neurosci. 15, 1–11 (2021). https://doi.org/10.3389/fnhum.2021.614882

    CrossRef  Google Scholar 

  10. Z. Guo, Y. Pan, G. Zhao et al., Detection of driver vigilance level using EEG signals and driving contexts. IEEE Trans. Reliab. 67, 370–380 (2018). https://doi.org/10.1109/TR.2017.2778754

    CrossRef  Google Scholar 

  11. G.S. Yi, J. Wang, B. Deng, W.X. Le, Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease. Cogn. Neurodyn. 11, 147–160 (2017). https://doi.org/10.1007/s11571-016-9415-z

    CrossRef  Google Scholar 

  12. L.A.W. Gemein, R.T. Schirrmeister, P. Chrabąszcz, et al. Machine-learning-based diagnostics of EEG pathology. Neuroimage 220, 117021 (2020). https://doi.org/10.1016/j.neuroimage.2020.117021

  13. B. Prakash, G.K. Baboo, V. Baths, A novel approach to learning models on eeg data using graph theory features—a comparative study. Big Data Cogn. Comput. 5, (2021). https://doi.org/10.3390/bdcc5030039

  14. Z. Wei, C. Wu, X. Wang, et al., Using support vector machine on EEG for advertisement impact assessment. Front. Neurosci. 12 (2018) . https://doi.org/10.3389/fnins.2018.00076

  15. J. Zhou, G. Cui, S. Hu et al., Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020). https://doi.org/10.1016/j.aiopen.2021.01.001

    CrossRef  Google Scholar 

  16. T. Brandmeyer, A. Delorme, Reduced mind wandering in experienced meditators and associated EEG correlates. Exp. Brain. Res. 236, 2519–2528 (2018). https://doi.org/10.1007/s00221-016-4811-5

    CrossRef  Google Scholar 

  17. N. Jackson, S.R. Cole, B. Voytek, N.C. Swann, Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography. eNeuro 6,1–11 (2019). https://doi.org/10.1523/ENEURO.0151-19.2019

  18. J.S. George, J. Strunk, R. Mak-Mccully, et al., Dopaminergic therapy in Parkinson’s disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. NeuroImage Clin. 3, 261–270 (2013). https://doi.org/10.1016/j.nicl.2013.07.013

    CrossRef  Google Scholar 

  19. C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain. Mapp. 28, 1178–1193 (2007). https://doi.org/10.1002/hbm.20346

    CrossRef  Google Scholar 

  20. R. Bruña, F. Maestú, E. Pereda, Phase locking value revisited: Teaching new tricks to an old dog. J. Neural. Eng. 15, (2018). https://doi.org/10.1088/1741-2552/aacfe4

  21. M. Vinck, R. Oostenveld, M. van Wingerden, et al., An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011) . https://doi.org/10.1016/j.neuroimage.2011.01.055

  22. A. Gramfort, M. Luessi, E. Larson et al., MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 1–13 (2013). https://doi.org/10.3389/fnins.2013.00267

    CrossRef  Google Scholar 

  23. S. Appelhoff, M. Sanderson, T. Brooks, et al., MNE-BIDS: organizing electrophysiological data into the BIDS format and facilitating their analysis. J. Open Source Softw. 4, 1896 (2019). https://doi.org/10.21105/joss.01896

  24. A.K. Maddirala, K.C. Veluvolu, Eye-blink artifact removal from single channel EEG with k-means and SSA. Sci. Rep. 11, 11043 (2021). https://doi.org/10.1038/s41598-021-90437-7

    CrossRef  Google Scholar 

  25. X. Lun, Z. Yu, T. Chen et al., A simplified CNN classification Method for MI-EEG via the electrode Pairs signals. Front. Hum. Neurosci. 14, 338 (2020)

    CrossRef  Google Scholar 

  26. R. Dhanapal, D. Bhanu, Electroencephalogram classification using various artificial neural networks. J. Crit. Rev. 7, 891–894 (2020). https://doi.org/10.31838/jcr.07.04.170

  27. Z. Jiao, X. Gao, Y. Wang et al., Deep Convolutional Neural Networks for mental load classification based on EEG data. Pattern Recognit. 76, 582–595 (2018). https://doi.org/10.1016/j.patcog.2017.12.002

    CrossRef  Google Scholar 

  28. S. Kuanar, V. Athitsos, N. Pradhan, et al., Cognitive analysis of working memory load from eeg, by a deep recurrent neural network, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 2576–2580. https://doi.org/10.1109/ICASSP.2018.8462243

  29. M. Bilucaglia, G.M. Duma, G. Mento, et al. Applying machine learning EEG signal classification to emotion‑related brain anticipatory activity. F1000 Res. 9, 173 (2020). https://doi.org/10.12688/f1000research.22202.1

  30. A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16 (2019).https://doi.org/10.1088/1741-2552/ab0ab5

  31. S. Chang, W. Dong, H. Jun, Use of electroencephalogram and long short-term memory networks to recognize design preferences of users toward architectural design alternatives. J. Comput. Des. Eng. 7, 551–562 (2020). https://doi.org/10.1093/jcde/qwaa045

  32. A.V. Medvedev, G.I. Agoureeva, A.M. Murro, A long short-term memory neural network for the detection of epileptiform spikes and high frequency oscillations. Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-55861-w

  33. Y. Roy, H. Banville, I. Albuquerque, et al., Deep learning-based electroencephalography analysis: asystematic review. arXiv (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank OpenNeuro for providing access to the EEG datasets and citations for the datasets have been included within the main text.

Declaration

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeky Baths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Baboo, G.K., Dubey, S., Baths, V. (2023). Comparative Study of Neural Networks (G/C/RNN) and Traditional Machine Learning Models on EEG Datasets. In: Kumar, A., Ghinea, G., Merugu, S., Hashimoto, T. (eds) Proceedings of the International Conference on Cognitive and Intelligent Computing. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2358-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2358-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2357-9

  • Online ISBN: 978-981-19-2358-6

  • eBook Packages: Computer ScienceComputer Science (R0)