Skip to main content

Emerging Technological Applications of Additive Manufacturing

  • Chapter
  • First Online:
Additive Manufacturing for Chemical Sciences and Engineering

Abstract

Once considered to be a field specific to mechanical sciences, additive manufacturing has now proliferated into all streams of science and swiftly becoming a true global phenomenon. Moving well beyond printing of customized prototypes and trinkets, many enterprises now manufacture using 3D printing at moderate to large scale. Massive improvements in precision, quality and reliability of additive manufacturing have triggered rapid uptake of this technology in the research and development sector especially in fields such as chemical engineering, electronic engineering, materials engineering, biochemistry, optics, analytical sciences, industrial chemistry, and environmental sciences. This chapter highlights some interesting applications of additive manufacturing in chemical processes such as catalysis, separation, and high throughout experimentation, sensing devices such as microfluidics, electrochemical, optical, optoelectronic, and electrical sensors, and energy systems such as batteries and capacitors. The advantages of AM porous catalysts and adsorbents materialize from their high catalytic and separation efficiencies, hierarchical porosity, suitable flow properties, superior mass and energy transfer, novel composite formulations, enhanced product selectivity and high throughput processing of reactants. On the other hand, additively manufactured sensor and energy systems gain the benefits of high performance, better cycling performance (charging/discharging), multifunctionality, geometric shape complexity, customized design, shaping of amorphous materials, better integration of device components and in three dimensions, portability, device flexibility, self-powering capability, and automatic operation. In all such applications the chemical reactivity of the 3D printed construct governs its primary functionality in addition to the shape derived basic function. Clearly this is an ascension from the simple use of printed constructs as 3D objects of complex shapes and geometry. Starting with a brief discussion on the rise of additive manufacturing in chemical sciences, this chapter mainly focusses on the applications of additive manufacturing while building on the knowledge gained in the previous chapters. The applications have been classified as surface sensitive chemical processes which are confined to the first few hundred microns of the surface of a 3D printed construct, bulk sensitive chemical processes which depend on the bulk properties of 3D constructs and high throughput experimentation applications. A summary and outlook section conclude the chapter with a perspective and viewpoint on the future frontiers for additive manufacturing in chemical processes and a knowledge test has been provided for the young learners in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

4D:

Four-dimensional

AAO:

Andic Aluminium Oxide

ABS:

Acrylonitrile butadiene styrene

AJP:

Aerosol Jet Printing

AM:

Additive Manufacturing

APTES:

(3-Aminopropyl)triethoxysilane

As:

Arsenic

ATP:

Adenosine Triphosphate

ATM:

Ammonium Thiomolybdate

Au:

Gold

BHA:

Bariumhexaaluminate

BL:

Bioluminescence

BMIM+BF4:

1-Butyl-3-methylimidazoliumtetrafluoroborate

BST:

Bi0.4Sb1.6Te3

BTC:

Benzene Tricarboxylic Acid

CAD:

Computer-Aided Design

CMOS:

Complementary Metal-Oxide Semiconductor

CNT:

Carbon Nano Tubes

CV:

Cyclic Voltammetry

DIW:

Direct Ink Writing

DLP SLA:

Dynamic Laser Projection Stereolithography

DMSO:

Dimethylsulfoxide

DME:

Dimethylether

EES:

Electrical Energy Storage

EPAM:

Electric polling assisted Additive Manufacturing

FDM:

Fused Deposition Modelling

Ga:

Gallium

GNS-GO:

Graphene Nanosheets-Graphene Oxide

HTE:

High Throughput Equipment

HER:

Hydrogen Evolution Reaction

IC:

Integrated Circuit

ICPMS:

Inductively Coupled Plasma Mass Spectrometer

IJP:

Ink Jet Printing

In:

Indium

ITO/PEDOT:PSS:

Indium tin Oxide/Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend

LTPMS:

Low Temperature Plasma-based Mass Spectrometry

LIFT:

Laser Induced Forward Transfer

LTO:

Li4Ti5O12

LFP:

LiFePO4

LAGP:

Li1.5Al0.5Ge1.5P3O12

LCD:

Liquid Crystal display

Li:

Lithium

MAPLE DW:

Matrix Assisted Pulsed Laser Evaporation Direct Write

MEH-PPV:

Poly 2-methoxy, 5-(2ethylhexyloxy)-1,4-phenylene vinylene

MEMS:

Microelectromechanical Systems

MOF:

Metal Organic Framework

MSI:

Mass Spectrometry Imaging

MTO:

Methanol to Olefins

NAND:

NOT-AND

NMP:

N-methyl 2-pyrrolidone

OER:

Oxygen Evolution Reaction

PCL:

Poly-ε-caprolactone

Pd:

Palladium

PDMS:

Polydimethoxysilane

PE:

Piezoelectric

PEC:

Photo-electro Catalytic

PEDOT:

Poly(3,4-ethylenedioxy-thiophene)

PEI:

Polyethylenimine

PEGDA:

Poly(ethylene glycol) diacrylate

PLA:

Polylactic Acid

PP:

Polypropylene

Pt:

Platinum

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene Fluoride

P(VDF-TrFE):

Poly(vinylidene fluoride-trifluoroethlene)

QD-LED:

Quantum Dot Light Emitting Diode

RFID:

Radio Frequency Identification

rGO:

Reduced Graphene Oxide

Sb:

Antimony

SEIRA:

Surface-enhanced Infra-red Absorption

SEM:

Scanning Electron Microscopy

SERRS:

Surface-enhanced Resonance Raman Scattering

SERS:

Surface-enhanced Raman Scattering

SiC:

Silicon Carbide

SLA:

Stereolithography

TE:

Thermoelectric

TFT:

Thin Film Transistors

TPCFL:

Two Photon Continuous Flow Lithography

TPL:

Two-photon Lithography

TRGO:

Thermally Reduced Graphene Oxide

UHF:

Ultra-High Frequency

UTAM:

Ultra-thin Alumina Membranes

WHSV:

Weight Hourly Space Velocity

YIG:

Yttrium Iron Garnet

References

  1. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639. https://doi.org/10.1021/nl4007744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r

    Article  CAS  PubMed  Google Scholar 

  3. Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, van der Mei HC, Busscher HJ, Herrmann A, Ren Y (2015) 3D-printable antimicrobial composite resins. Adv Func Mater 25(43):6756–6767. https://doi.org/10.1002/adfm.201502384

    Article  CAS  Google Scholar 

  4. Joerger RD (2007) Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag Technol Sci 20(4):231–273. https://doi.org/10.1002/pts.774

    Article  CAS  Google Scholar 

  5. Wang X, Cai X, Guo Q, Zhang T, Kobe B, Yang J (2013) i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chem Commun (Camb) 49(86):10064–10066. https://doi.org/10.1039/c3cc45817b

    Article  CAS  Google Scholar 

  6. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41). https://doi.org/10.1039/c1jm12523k

  7. Fihri A, Bovero E, Al-Shahrani A, Al-Ghamdi A, Alabedi G (2017) Recent progress in superhydrophobic coatings used for steel protection: a review. Colloids Surf, A 520:378–390. https://doi.org/10.1016/j.colsurfa.2016.12.057

    Article  CAS  Google Scholar 

  8. Jafari R, Cloutier C, Allahdini A, Momen G (2019) Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. Int J Adv Manufact Technol 103(1–4):1225–1238. https://doi.org/10.1007/s00170-019-03630-4

    Article  Google Scholar 

  9. Graeber G, Martin Kieliger OB, Schutzius TM, Poulikakos D (2018) 3D-printed surface architecture enhancing superhydrophobicity and viscous droplet repellency. ACS Appl Mater Interfaces 10(49):43275–43281. https://doi.org/10.1021/acsami.8b16893

    Article  PubMed  Google Scholar 

  10. Liu M, Wang S, Jiang L (2017) Nature-inspired superwettability systems. Nat. Rev. Mater. 2:1–17. https://doi.org/10.1038/natrevmats.2017.36

    Article  CAS  Google Scholar 

  11. Yan C, Jiang P, Jia X, Wang X (2020) 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale 12(5):2924–2938. https://doi.org/10.1039/c9nr09620e

    Article  CAS  PubMed  Google Scholar 

  12. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23(9):094007. https://doi.org/10.1088/0964-1726/23/9/094007

    Article  Google Scholar 

  13. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15(4):413–418. https://doi.org/10.1038/nmat4544

    Article  CAS  PubMed  Google Scholar 

  14. Gowers SA, Curto VF, Seneci CA, Wang C, Anastasova S, Vadgama P, Yang GZ, Boutelle MG (2015) 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Anal Chem 87(15):7763–7770. https://doi.org/10.1021/acs.analchem.5b01353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14(12):2023–2032. https://doi.org/10.1039/c4lc00171k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ragones H, Schreiber D, Inberg A, Berkh O, Kósa G, Freeman A, Shacham-Diamand Y (2015) Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics. Sens Actuators, B Chem 216:434–442. https://doi.org/10.1016/j.snb.2015.04.065

    Article  CAS  Google Scholar 

  17. Ragones H, Schreiber D, Inberg A, Berkh O, Kósa G, Shacham-Diamand Y (2015) Processing issues and the characterization of soft electrochemical 3D sensor. Electrochim Acta 183:125–129. https://doi.org/10.1016/j.electacta.2015.04.109

    Article  CAS  Google Scholar 

  18. Bishop GW, Satterwhite JE, Bhakta S, Kadimisetty K, Gillette KM, Chen E, Rusling JF (2015) 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated prussian blue nanoparticle-modified electrodes. Anal Chem 87(10):5437–5443. https://doi.org/10.1021/acs.analchem.5b00903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dias AA, Cardoso TMG, Cardoso RM, Duarte LC, Muñoz RAA, Richter EM, Coltro WKT (2016) Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed cell coupled with amperometric detection. Sens Actuators, B Chem 226:196–203. https://doi.org/10.1016/j.snb.2015.11.040

    Article  CAS  Google Scholar 

  20. Snowden ME, King PH, Covington JA, Macpherson JV, Unwin PR (2010) Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping. Anal Chem 82:3124–3131

    Article  CAS  Google Scholar 

  21. Bauer R, Stewart G, Johnstone W, Boyd E, Lengden M (2014) 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases. Opt Lett 39(16):4796–4799. https://doi.org/10.1364/OL.39.004796

    Article  CAS  PubMed  Google Scholar 

  22. Dantism S, Takenaga S, Wagner P, Wagner T, Schöning MJ (2016) Determination of the extracellular acidification of Escherichia coliK12 with a multi-chamber-based LAPS system. Phys Status Solidi (a) 213(6):1479–1485. https://doi.org/10.1002/pssa.201533043

  23. Takenaga S, Schneider B, Erbay E, Biselli M, Schnitzler T, Schöning MJ, Wagner T (2015) Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process. Phys Status Solidi (a) 212(6):1347–1352. https://doi.org/10.1002/pssa.201532053

  24. Ambrosi A, Moo JGS, Pumera M (2016) Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv Func Mater 26(5):698–703. https://doi.org/10.1002/adfm.201503902

    Article  CAS  Google Scholar 

  25. Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci USA 111(42):15013–15018. https://doi.org/10.1073/pnas.1414764111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krejcova L, Nejdl L, Rodrigo MA, Zurek M, Matousek M, Hynek D, Zitka O, Kopel P, Adam V, Kizek R (2014) 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 54:421–427. https://doi.org/10.1016/j.bios.2013.10.031

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Wang Y, Lockwood SY, Spence DM (2014) 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 139(13):3219–3226. https://doi.org/10.1039/c3an02357e

    Article  CAS  PubMed  Google Scholar 

  28. Spilstead KB, Learey JJ, Doeven EH, Barbante GJ, Mohr S, Barnett NW, Terry JM, Hall RM, Francis PS (2014) 3D-printed and CNC milled flow-cells for chemiluminescence detection. Talanta 126:110–115. https://doi.org/10.1016/j.talanta.2014.03.047

    Article  CAS  PubMed  Google Scholar 

  29. Roda A, Guardigli M, Calabria D, Calabretta MM, Cevenini L, Michelini E (2014) A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 139(24):6494–6501. https://doi.org/10.1039/c4an01612b

    Article  CAS  PubMed  Google Scholar 

  30. Bishop GW, Satterwhite-Warden JE, Bist I, Chen E, Rusling JF (2016) Electrochemiluminescence at bare and DNA-coated graphite electrodes in 3D-printed fluidic devices. ACS Sens 1(2):197–202. https://doi.org/10.1021/acssensors.5b00156

    Article  CAS  PubMed  Google Scholar 

  31. Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM, Faria RC, Lee NH, Rusling JF (2016) 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron 77:188–193. https://doi.org/10.1016/j.bios.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  32. Lee W, Kwon D, Chung B, Jung GY, Au A, Folch A, Jeon S (2014) Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal Chem 86(13):6683–6688. https://doi.org/10.1021/ac501436d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci Rep 5:7717. https://doi.org/10.1038/srep07717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A (2016) Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells.” Sens Actuators, B Chem 225:249–257. https://doi.org/10.1016/j.snb.2015.11.017

    Article  CAS  Google Scholar 

  35. Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A (2015) 3D-printed microfluidic automation. Lab Chip 15(8):1934–1941. https://doi.org/10.1039/c5lc00126a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alapan Y, Hasan MN, Shen R, Gurkan UA (2015) Three-dimensional printing based hybrid manufacturing of microfluidic devices. J Nanotechnol Eng Med 6(2). https://doi.org/10.1115/1.4031231

  37. Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85(12):5622–5626. https://doi.org/10.1021/ac4009594

    Article  CAS  PubMed  Google Scholar 

  38. Lee KG, Park KJ, Seok S, Shin S, Kim DH, Park JY, Heo YS, Lee SJ, Lee TJ (2014) 3D printed modules for integrated microfluidic devices. RSC Adv 4(62):32876–32880. https://doi.org/10.1039/c4ra05072j

    Article  CAS  Google Scholar 

  39. Hossain A, Canning J, Ast S, Rutledge PJ, Teh Li Y, Jamalipour A (2015) Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sens J 15(9):5095–5102. https://doi.org/10.1109/jsen.2014.2361651

    Article  CAS  Google Scholar 

  40. Heger Z, Zitka J, Cernei N, Krizkova S, Sztalmachova M, Kopel P, Masarik M, Hodek P, Zitka O, Adam V, Kizek R (2015) 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis 36(11–12):1256–1264. https://doi.org/10.1002/elps.201400559

    Article  CAS  PubMed  Google Scholar 

  41. Heger Z, Zitka J, Nejdl L, Moulick A, Milosavljevic V, Kopel P, Zavodsky O, Kapus J, Lenza L, Rezka M, Adam V, Kizek R (2016) 3D printed stratospheric probe as a platform for determination of DNA damage based on carbon quantum dots/DNA complex fluorescence increase. Monatshefte für Chemie - Chem Mon 147(5):873–880. https://doi.org/10.1007/s00706-016-1705-y

    Article  CAS  Google Scholar 

  42. Spivey EC, Xhemalce B, Shear JB, Finkelstein IJ (2014) 3D-printed microfluidic microdissector for high-throughput studies of cellular aging. Anal Chem 86(15):7406–7412. https://doi.org/10.1021/ac500893a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yafia M, Ahmadi A, Hoorfar M, Najjaran H (2015) Ultra-portable smartphone controlled integrated digital microfluidic system in a 3D-printed modular assembly. Micromachines 6(9):1289–1305. https://doi.org/10.3390/mi6091289

    Article  Google Scholar 

  44. Dirkzwager RM, Liang S, Tanner JA (2016) Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping. ACS Sens 1(4):420–426. https://doi.org/10.1021/acssensors.5b00175

    Article  CAS  Google Scholar 

  45. Chan HN, Shu Y, Xiong B, Chen Y, Chen Y, Tian Q, Michael SA, Shen B, Wu H (2015) Simple, cost-effective 3D printed microfluidic components for disposable, point-of-care colorimetric analysis. . ACS Sens 1(3):227–234. https://doi.org/10.1021/acssensors.5b00100

    Article  CAS  Google Scholar 

  46. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86(6):3124–3130. https://doi.org/10.1021/ac4041857

    Article  CAS  PubMed  Google Scholar 

  47. Comina G, Suska A, Filippini D (2015) Autonomous chemical sensing interface for universal cell phone readout. Angew Chem Int Ed Engl 54(30):8708–8712. https://doi.org/10.1002/anie.201503727

    Article  CAS  PubMed  Google Scholar 

  48. Achilli E, Minguzzi A, Visibile A, Locatelli C, Vertova A, Naldoni A, Rondinini S, Auricchio F, Marconi S, Fracchia M, Ghigna P (2016) 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation. J Synchrotron Radiat 23(2):622–628. https://doi.org/10.1107/S1600577515024480

    Article  PubMed  Google Scholar 

  49. Hanada Y, Sugioka K, Shihira-Ishikawa I, Kawano H, Miyawaki A, Midorikawa K (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11(12):2109–2115. https://doi.org/10.1039/c1lc20101h

    Article  CAS  PubMed  Google Scholar 

  50. Tsuda S, Jaffery H, Doran D, Hezwani M, Robbins PJ, Yoshida M, Cronin L (2015) Customizable 3D printed “plug and play” millifluidic devices for programmable fluidics. PLoS ONE 10(11):e0141640. https://doi.org/10.1371/journal.pone.0141640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ude C, Hentrop T, Lindner P, Lücking TH, Scheper T, Beutel S (2015) New perspectives in shake flask pH control using a 3D-printed control unit based on pH online measurement. Sens Actuat, B Chem 221:1035–1043. https://doi.org/10.1016/j.snb.2015.07.017

    Article  CAS  Google Scholar 

  52. Singh H, Shimojima M, Shiratori T, le An V, Sugamata M, Yang M (2015) Application of 3D printing technology in increasing the diagnostic performance of enzyme-linked immunosorbent assay (ELISA) for infectious diseases. Sensors (Basel) 15(7):16503–16515. https://doi.org/10.3390/s150716503

    Article  CAS  Google Scholar 

  53. Hill RT, Kozek KM, Hucknall A, Smith DR, Chilkoti A (2014) Nanoparticle-film plasmon ruler interrogated with transmission visible spectroscopy. ACS Photon 1(10):974–984. https://doi.org/10.1021/ph500190q

    Article  CAS  Google Scholar 

  54. Kitson PJ, Symes MD, Dragone V, Cronin L (2013) Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem Sci 4(8):3099–3103. https://doi.org/10.1039/c3sc51253c

    Article  CAS  Google Scholar 

  55. Kitson PJ, Marshall RJ, Long D, Forgan RS, Cronin L (2014) 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew Chem Int Ed Engl 53(47):12723–12728. https://doi.org/10.1002/anie.201402654

    Article  CAS  PubMed  Google Scholar 

  56. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4(5):349–354. https://doi.org/10.1038/nchem.1313

    Article  CAS  PubMed  Google Scholar 

  57. Venkateswaran PS, Sharma A, Dubey S, Agarwal A, Goel S (2016) Rapid and automated measurement of milk adulteration using a 3D printed optofluidic microviscometer (OMV). IEEE Sens J 16(9):3000–3007. https://doi.org/10.1109/jsen.2016.2527921

    Article  CAS  Google Scholar 

  58. Chahadih A, Cresson PY, Hamouda Z, Gu S, Mismer C, Lasri T (2015) Microwave/microfluidic sensor fabricated on a flexible kapton substrate for complex permittivity characterization of liquids. Sens Actuat, A 229:128–135. https://doi.org/10.1016/j.sna.2015.03.027

    Article  CAS  Google Scholar 

  59. Kimionis J, Isakov M, Koh BS, Georgiadis A, Tentzeris MM (2015) 3D-printed origami packaging with inkjet-printed antennas for RF harvesting sensors. IEEE Trans Microw Theory Tech 63(12):4521–4532. https://doi.org/10.1109/tmtt.2015.2494580

    Article  Google Scholar 

  60. Shamsinejad S, De Flaviis F, Mousavi P (2016) Microstrip-fed 3-D folded slot antenna on cubic structure. IEEE Anten Wirel Propag Lett 15:1081–1084. https://doi.org/10.1109/lawp.2015.2493146

    Article  Google Scholar 

  61. Zhao J, Liu M, Liang L, Wang W, Xie J (2016) Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor. Sens Actuat, A 238:379–388. https://doi.org/10.1016/j.sna.2015.12.029

    Article  CAS  Google Scholar 

  62. Suaste-Gomez E, Rodriguez-Roldan G, Reyes-Cruz H, Teran-Jimenez O (2016) Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors (Basel) 16(3). https://doi.org/10.3390/s16030332

  63. Shemelya C, Cedillos F, Aguilera E, Espalin D, Muse D, Wicker R, MacDonald E (2015) Encapsulated copper wire and copper mesh capacitive sensing for 3-D printing applications. IEEE Sens J 15(2):1280–1286. https://doi.org/10.1109/jsen.2014.2356973

    Article  Google Scholar 

  64. Haque RI, Ogam E, Loussert C, Benaben P, Boddaert X (2015) Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques. Sens (Basel) 15(10):26018–26038. https://doi.org/10.3390/s151026018

    Article  Google Scholar 

  65. Laszczak P, Jiang L, Bader DL, Moser D, Zahedi S (2015) Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Med Eng Phys 37(1):132–137. https://doi.org/10.1016/j.medengphy.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  66. Borghetti M, Serpelloni M, Sardini E, Pandini S (2016) Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing. Sens Actuat, A 243:71–80. https://doi.org/10.1016/j.sna.2016.03.021

    Article  CAS  Google Scholar 

  67. Hong J, Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11). https://doi.org/10.1371/journal.pone.0049365

  68. Chang Y-H, Wang K, Wu C, Chen Y, Zhang C, Wang B (2015) A facile method for integrating direct-write devices into three-dimensional printed parts. Smart Mater Struct 24(6). https://doi.org/10.1088/0964-1726/24/6/065008

  69. Ota H, Emaminejad S, Gao Y, Zhao A, Wu E, Challa S, Chen K, Fahad HM, Jha AK, Kiriya D, Gao W, Shiraki H, Morioka K, Ferguson AR, Healy KE, Davis RW, Javey A (2016) Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv Mater Technol 1(1). https://doi.org/10.1002/admt.201600013

  70. Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35(3):315–321. https://doi.org/10.1007/s10529-012-1087-0

    Article  CAS  PubMed  Google Scholar 

  71. Yun H-y, Kim H-c, Lee I-h (2015) Research for improved flexible tactile sensor sensitivity. J Mech Sci Technol 29(12):5133–5138. https://doi.org/10.1007/s12206-015-1112-z

    Article  Google Scholar 

  72. Guo SZ, Yang X, Heuzey MC, Therriault D (2015) 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7(15):6451–6456. https://doi.org/10.1039/c5nr00278h

    Article  CAS  PubMed  Google Scholar 

  73. Chang WS, Kim JH, Kim D, Cho SH, Kwon Seol S (2014) Individually addressable suspended conducting-polymer wires in a chemiresistive gas sensor. Macromol Chem Phys 215(17):1633–1638. https://doi.org/10.1002/macp.201400220

    Article  CAS  Google Scholar 

  74. Vatani M, Lu Y, Engeberg ED, Choi J-W (2015) Combined 3D printing technologies and material for fabrication of tactile sensors. Int J Precis Eng Manuf 16(7):1375–1383. https://doi.org/10.1007/s12541-015-0181-3

    Article  Google Scholar 

  75. Leigh SJ, Purssell CP, Billson DR, Hutchins DA (2014) Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors. Smart Mater Struct 23(9). https://doi.org/10.1088/0964-1726/23/9/095039

  76. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L (2012) A 3D printed dry electrode for ECG/EEG recording. Sens Actuators, A 174:96–102. https://doi.org/10.1016/j.sna.2011.12.017

    Article  CAS  Google Scholar 

  77. Walzik MP, Vollmar V, Lachnit T, Dietz H, Haug S, Bachmann H, Fath M, Aschenbrenner D, Abolpour Mofrad S, Friedrich O, Gilbert DF (2015) A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 64:639–649. https://doi.org/10.1016/j.bios.2014.09.061

    Article  CAS  PubMed  Google Scholar 

  78. Salamone F, Belussi L, Danza L, Ghellere M, Meroni I (2015) Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis. Sensors (Basel) 15(6):13012–13027. https://doi.org/10.3390/s150613012

    Article  Google Scholar 

  79. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, Chung HJ, Jang KI, Liu Z, Ying M, Lu C, Webb RC, Kim JS, Laughner JI, Cheng H, Liu Y, Ameen A, Jeong JW, Kim GT, Huang Y, Efimov IR, Rogers JA (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5:3329. https://doi.org/10.1038/ncomms4329

    Article  CAS  PubMed  Google Scholar 

  80. Mehla S, Kandjani A, Coyle V, Harrison CJ, Low MX, Kaner RB, Sabri Y, Bhargava SK (2022) Gold sunflower microelectrode arrays with dendritic nanostructures on the lateral surfaces for antireflection and surface-enhanced raman scattering. ACS Appl Nano Mater 5(2):1873–1890 https://doi.org/10.1021/acsanm.1c03501

  81. Ni Y, Ji R, Long K, Bu T, Chen K, Zhuang S (2017) A review of 3D-printed sensors. Appl Spectrosc Rev 52(7):623–652. https://doi.org/10.1080/05704928.2017.1287082

    Article  CAS  Google Scholar 

  82. Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  CAS  Google Scholar 

  83. Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical sensors. Anal Chem 82:4723–4741

    Article  CAS  Google Scholar 

  84. Yang T, Xie D, Li Z, Zhu H (2017) Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng R Rep 115:1–37. https://doi.org/10.1016/j.mser.2017.02.001

    Article  Google Scholar 

  85. Camposeo A, Persano L, Farsari M, Pisignano D (2019) Additive manufacturing: applications and directions in photonics and optoelectronics. Adv Opt Mater 7(1):1800419. https://doi.org/10.1002/adom.201800419

    Article  CAS  PubMed  Google Scholar 

  86. Conformal Robotic Stereolithography (2016). 3 (4):226–235. doi:https://doi.org/10.1089/3dp.2016.0042

  87. Alaman J, Alicante R, Pena JI, Sanchez-Somolinos C (2016) Inkjet printing of functional materials for optical and photonic applications. Materials (Basel) 9(11). https://doi.org/10.3390/ma9110910

  88. Kong YL, Tamargo IA, Kim H, Johnson BN, Gupta MK, Koh TW, Chin HA, Steingart DA, Rand BP, McAlpine MC (2014) 3D printed quantum dot light-emitting diodes. Nano Lett 14(12):7017–7023. https://doi.org/10.1021/nl5033292

    Article  CAS  PubMed  Google Scholar 

  89. Pyo J, Kim JT, Lee J, Yoo J, Je JH (2016) 3D printed nanophotonic waveguides. Adv Opt Mater 4(8):1190–1195. https://doi.org/10.1002/adom.201600220

    Article  CAS  Google Scholar 

  90. Weidenbach M, Jahn D, Rehn A, Busch SF, Beltran-Mejia F, Balzer JC, Koch M (2016) 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz. Opt Express 24(25):28968–28976. https://doi.org/10.1364/OE.24.028968

    Article  CAS  PubMed  Google Scholar 

  91. Crespi A, Osellame R, Ramponi R, Brod DJ, Galvão EF, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F (2013) Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photon 7(7):545–549. https://doi.org/10.1038/nphoton.2013.112

    Article  CAS  Google Scholar 

  92. Spagnolo N, Vitelli C, Aparo L, Mataloni P, Sciarrino F, Crespi A, Ramponi R, Osellame R (2013) Three-photon bosonic coalescence in an integrated tritter. Nat Commun 4:1606. https://doi.org/10.1038/ncomms2616

    Article  CAS  PubMed  Google Scholar 

  93. Laza SC, Polo M, Neves AA, Cingolani R, Camposeo A, Pisignano D (2012) Two-photon continuous flow lithography. Adv Mater 24(10):1304–1308. https://doi.org/10.1002/adma.201103357

    Article  CAS  PubMed  Google Scholar 

  94. Thiele S, Arzenbacher K, Gissibl T, Giessen H, Herkommer AM (2017) 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci Adv 3(2):e1602655

    Article  Google Scholar 

  95. Kamyshny A, Magdassi S (2019) Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 48(6):1712–1740. https://doi.org/10.1039/c8cs00738a

    Article  CAS  PubMed  Google Scholar 

  96. Piqué A, Auyeung RCY, Kim H, Charipar NA, Mathews SA (2016) Laser 3D micro-manufacturing. J Phys D: Appl Phys 49(22). https://doi.org/10.1088/0022-3727/49/22/223001

  97. Shaw-Stewart J, Lippert T, Nagel M, Nuesch F, Wokaun A (2011) Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection. ACS Appl Mater Interfaces 3(2):309–316. https://doi.org/10.1021/am100943f

    Article  CAS  PubMed  Google Scholar 

  98. Chrisey DB, Pique A, Modi R, Wu HD, Auyeung RCY, Young HD (2000) Direct writing of conformal mesoscopic electronic devices by MAPLE DW. Appl Surf Sci 168:345–352

    Article  CAS  Google Scholar 

  99. Wilkinson NJ, Smith MAA, Kay RW, Harris RA (2019) A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing. Int J Adv Manufact Technol 105(11):4599–4619. https://doi.org/10.1007/s00170-019-03438-2

    Article  Google Scholar 

  100. Secor EB (2018) Principles of aerosol jet printing. Flexible Print Electron 3(3). https://doi.org/10.1088/2058-8585/aace28

  101. Hoey JM, Lutfurakhmanov A, Schulz DL, Akhatov IS (2012) A review on aerosol-based direct-write and its applications for microelectronics. J Nanotechnol 2012:1–22. https://doi.org/10.1155/2012/324380

    Article  CAS  Google Scholar 

  102. Folgar CE, Suchicital C, Priya S (2011) Solution-based aerosol deposition process for synthesis of multilayer structures. Mater Lett 65(9):1302–1307. https://doi.org/10.1016/j.matlet.2011.01.069

    Article  CAS  Google Scholar 

  103. Marinov VR, Atanasov YA, Khan A, Vaselaar D, Halvorsen A, Schulz DL, Chrisey DB (2007) Direct-write vapor sensors on FR4 plastic substrates. IEEE Sens J 7(6):937–944. https://doi.org/10.1109/jsen.2007.895964

    Article  CAS  Google Scholar 

  104. Hörteis M, Glunz SW (2008) Fine line printed silicon solar cells exceeding 20% efficiency. Prog Photovoltaics Res Appl 16(7):555–560. https://doi.org/10.1002/pip.850

    Article  CAS  Google Scholar 

  105. Habas SE, Platt HAS, Hest MFAMv, Ginley DS, (2010) Low-cost inorganic solar cells: from ink to printed device. Chem Rev 110:6571–6594

    Article  CAS  Google Scholar 

  106. Hoey JM, Reich MT, Halvorsen A, Vaselaar D, Braaten K, Maassel M, Akhatov IS, Ghandour O, Drzaic P, Schulz DL (2009) Rapid prototyping RFID antennas using direct-write. IEEE Trans Adv Packag 32(4):809–815. https://doi.org/10.1109/tadvp.2009.2021768

    Article  Google Scholar 

  107. Ha M, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4(8):4388–4395

    Article  CAS  Google Scholar 

  108. Oztan C, Ballikaya S, Ozgun U, Karkkainen R, Celik E (2019) Additive manufacturing of thermoelectric materials via fused filament fabrication. Appl Mater Today 15:77–82. https://doi.org/10.1016/j.apmt.2019.01.001

    Article  Google Scholar 

  109. Boudouris BW, Yee S (2017) Structure, properties and applications of thermoelectric polymers. J Appl Polymer Sci 134(3). https://doi.org/10.1002/app.44456

  110. Du Y, Chen J, Meng Q, Xu J, Lu J, Paul B, Eklund P (2020) Flexible thermoelectric double‐layer inorganic/organic composites synthesized by additive manufacturing. Adv Electron Mater 6(8). https://doi.org/10.1002/aelm.202000214

  111. He M, Zhao Y, Wang B, Xi Q, Zhou J, Liang Z (2015) 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 11(44):5889–5894. https://doi.org/10.1002/smll.201502153

    Article  CAS  PubMed  Google Scholar 

  112. Qiu J, Yan Y, Luo T, Tang K, Yao L, Zhang J, Zhang M, Su X, Tan G, Xie H, Kanatzidis MG, Uher C, Tang X (2019) 3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. Energy Environ Sci 12(10):3106–3117. https://doi.org/10.1039/c9ee02044f

    Article  CAS  Google Scholar 

  113. Kee S, Haque MA, Corzo D, Alshareef HN, Baran D (2019) Self‐healing and stretchable 3D‐printed organic thermoelectrics. Adv Funct Mater 29(51). https://doi.org/10.1002/adfm.201905426

  114. Cholleti ER (2018) A review on 3D printing of piezoelectric materials. In: IOP conference series: materials science and engineering, vol 455. https://doi.org/10.1088/1757-899x/455/1/012046

  115. Sappati KK, Bhadra S (2018) Piezoelectric polymer and paper substrates: a review. Sensors (Basel) 18(11). https://doi.org/10.3390/s18113605

  116. Bodkhe S, Ermanni P (2019) Challenges in 3D printing of piezoelectric materials. Multifunct Mater 2(2). https://doi.org/10.1088/2399-7532/ab0c41

  117. Chen C, Wang X, Wang Y, Yang D, Yao F, Zhang W, Wang B, Sewvandi GA, Yang D, Hu D (2020) Additive manufacturing of piezoelectric materials. Adv Funct Mater 30(52). https://doi.org/10.1002/adfm.202005141

  118. Lee C, Tarbutton JA (2014) Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater Struct 23(9). https://doi.org/10.1088/0964-1726/23/9/095044

  119. Bodkhe S, Rajesh PSM, Gosselin FP, Therriault D (2018) Simultaneous 3D printing and poling of PVDF and its nanocomposites. ACS Appl Energy Mater 1(6):2474–2482. https://doi.org/10.1021/acsaem.7b00337

    Article  CAS  Google Scholar 

  120. Kim K, Zhu W, Qu X, Aaronson C, McCall WR, Chen S, Sirbuly DJ (2014) 3D optical printing of piezoelectric nanoparticle - polymer composite materials. ACS Nano 8(10):9799–9806

    Article  CAS  Google Scholar 

  121. Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86. https://doi.org/10.1016/j.nanoen.2016.06.048

    Article  CAS  Google Scholar 

  122. Lim S, Son D, Kim J, Lee YB, Song J-K, Choi S, Lee DJ, Kim JH, Lee M, Hyeon T, Kim D-H (2015) Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Func Mater 25(3):375–383. https://doi.org/10.1002/adfm.201402987

    Article  CAS  Google Scholar 

  123. Lim J, Jung H, Baek C, Hwang G-T, Ryu J, Yoon D, Yoo J, Park K-I, Kim JH (2017) All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material. Nano Energy 41:337–343. https://doi.org/10.1016/j.nanoen.2017.09.046

    Article  CAS  Google Scholar 

  124. Chen W, Wang F, Yan K, Zhang Y, Wu D (2019) Micro-stereolithography of KNN-based lead-free piezoceramics. Ceram Int 45(4):4880–4885. https://doi.org/10.1016/j.ceramint.2018.11.185

    Article  CAS  Google Scholar 

  125. Parra-Cabrera C, Achille C, Kuhn S, Ameloot R (2018) 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem Soc Rev 47(1):209–230. https://doi.org/10.1039/c7cs00631d

    Article  CAS  PubMed  Google Scholar 

  126. Amin R, Knowlton S, Hart A, Yenilmez B, Ghaderinezhad F, Katebifar S, Messina M, Khademhosseini A, Tasoglu S (2016) 3D-printed microfluidic devices. Biofabrication 8(2):022001. https://doi.org/10.1088/1758-5090/8/2/022001

    Article  CAS  PubMed  Google Scholar 

  127. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411. https://doi.org/10.1038/nature05063

    Article  CAS  PubMed  Google Scholar 

  128. Au AK, Huynh W, Horowitz LF, Folch A (2016) 3D-printed microfluidics. Angew Chem Int Ed Engl 55(12):3862–3881. https://doi.org/10.1002/anie.201504382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78(12):3887–3907

    Article  CAS  Google Scholar 

  130. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) 3D printed microfluidics. Annu Rev Anal Chem (Palo Alto Calif) 13(1):45–65. https://doi.org/10.1146/annurev-anchem-091619-102649

    Article  Google Scholar 

  131. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  132. Paydar OH, Paredes CN, Hwang Y, Paz J, Shah NB, Candler RN (2014) Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sens Actuat, A 205:199–203. https://doi.org/10.1016/j.sna.2013.11.005

    Article  CAS  Google Scholar 

  133. Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16(10):1720–1742. https://doi.org/10.1039/c6lc00163g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sochol RD, Sweet E, Glick CC, Wu S-Y, Yang C, Restaino M, Lin L (2018) 3D printed microfluidics and microelectronics. Microelectron Eng 189:52–68. https://doi.org/10.1016/j.mee.2017.12.010

    Article  CAS  Google Scholar 

  135. Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9(1):016501. https://doi.org/10.1063/1.4905840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Carrell CS, McCord CP, Wydallis RM, Henry CS (2020) Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices. Anal Chim Acta 1124:78–84. https://doi.org/10.1016/j.aca.2020.05.014

    Article  CAS  PubMed  Google Scholar 

  137. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39(3):1183–1202. https://doi.org/10.1039/b821324k

    Article  CAS  PubMed  Google Scholar 

  138. Hurt C, Brandt M, Priya SS, Bhatelia T, Patel J, Selvakannan PR, Bhargava S (2017) Combining additive manufacturing and catalysis: a review. Catal Sci Technol 7(16):3421–3439. https://doi.org/10.1039/c7cy00615b

    Article  CAS  Google Scholar 

  139. Lawson S, Li X, Thakkar H, Rownaghi AA, Rezaei F (2021) Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chem Rev 121(10):6246–6291. https://doi.org/10.1021/acs.chemrev.1c00060

    Article  CAS  PubMed  Google Scholar 

  140. Friedmann D, Lee AF, Wilson K, Jalili R, Caruso RA (2019) Printing approaches to inorganic semiconductor photocatalyst fabrication. J Mater Chem A 7(18):10858–10878. https://doi.org/10.1039/c9ta00888h

    Article  CAS  Google Scholar 

  141. Zhou X, Liu C-j (2017) Three-dimensional printing for catalytic applications: current status and perspectives. Adv Funct Mater 27(30). https://doi.org/10.1002/adfm.201701134

  142. Stuecker JN, Miler JE, Ferrizz RE, Mudd JE, Cesarano J (2004) Advanced support structures for enhanced catalytic activity. Ind Eng Chem 43:51–55

    Article  CAS  Google Scholar 

  143. Lefevere J, Gysen M, Mullens S, Meynen V, Van Noyen J (2013) The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion. Catal Today 216:18–23. https://doi.org/10.1016/j.cattod.2013.05.020

    Article  CAS  Google Scholar 

  144. Noyen J, Wilde A, Schroeven M, Mullens S, Luyten J (2012) Ceramic processing techniques for catalyst design: formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. Int J Appl Ceram Technol 9(5):902–910. https://doi.org/10.1111/j.1744-7402.2012.02781.x

    Article  CAS  Google Scholar 

  145. Mehla S, Kukade S, Kumar P, Rao PVC, Sriganesh G, Ravishankar R (2019) Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5. Fuel 242:487–495. https://doi.org/10.1016/j.fuel.2019.01.065

    Article  CAS  Google Scholar 

  146. Mehla S, Krishnamurthy KR, Viswanathan B, John M, Niwate Y, Kishore Kumar SA, Pai SM, Newalkar BL (2013) n-Hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12. Microporous Mesoporous Mater 177:120–126. https://doi.org/10.1016/j.micromeso.2013.05.001

    Article  CAS  Google Scholar 

  147. Mehla S, Krishnamurthy KR, Viswanathan B, John M, Niwate Y, Kumar K, Pai SM, Newalkar BL (2013) n-Hexadecane hydroisomerization over Pt/ZSM-12: role of Si/Al ratio on product distribution. J Porous Mater 20(5):1023–1029. https://doi.org/10.1007/s10934-013-9682-6

    Article  CAS  Google Scholar 

  148. Mehla S, Krishsna V, Sriganesh G, Ravishankar R (2018) Mesoporous superacid catalysts for valorisation of refinery naphtha stream. RSC Adv 8(59):33702–33709. https://doi.org/10.1039/C8RA07024E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Danaci S, Protasova L, Lefevere J, Bedel L, Guilet R, Marty P (2016) Efficient CO 2 methanation over Ni/Al 2 O 3 coated structured catalysts. Catal Today 273:234–243. https://doi.org/10.1016/j.cattod.2016.04.019

    Article  CAS  Google Scholar 

  150. Elkoro A, Soler L, Llorca J, Casanova I (2019) 3D printed microstructured Au/TiO2 catalyst for hydrogen photoproduction. Appl Mater Today 16:265–272. https://doi.org/10.1016/j.apmt.2019.06.007

    Article  Google Scholar 

  151. Arin M, Lommens P, Hopkins SC, Pollefeyt G, Van der Eycken J, Ricart S, Granados X, Glowacki BA, Van Driessche I (2012) Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis. Nanotechnology 23(16):165603. https://doi.org/10.1088/0957-4484/23/16/165603

    Article  CAS  PubMed  Google Scholar 

  152. Arin M, Watté J, Pollefeyt G, De Buysser K, Van Driessche I, Lommens P (2013) Low temperature deposition of TiO2 layers from nanoparticle containing suspensions synthesized by microwave hydrothermal treatment. J Sol-Gel Sci Technol 66(1):100–111. https://doi.org/10.1007/s10971-013-2972-2

    Article  CAS  Google Scholar 

  153. Černá M, Veselý M, Dzik P (2011) Physical and chemical properties of titanium dioxide printed layers. Catal Today 161(1):97–104. https://doi.org/10.1016/j.cattod.2010.11.019

    Article  CAS  Google Scholar 

  154. Tubío CR, Azuaje J, Escalante L, Coelho A, Guitián F, Sotelo E, Gil A (2016) 3D printing of a heterogeneous copper-based catalyst. J Catal 334:110–115. https://doi.org/10.1016/j.jcat.2015.11.019

    Article  CAS  Google Scholar 

  155. Zhu C, Qi Z, Beck VA, Luneau M, Lattimer J, Chen W, Worsley MA, Ye J, Duoss EB, Spadaccini CM, Friend CM, Biener J (2018) Towards digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printing. Sci Adv 4(8):eaas9459

    Google Scholar 

  156. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK (2019) Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol 9:3582–3602. https://doi.org/10.1039/C9CY00518H

    Article  Google Scholar 

  157. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. https://doi.org/10.1039/c5cs00714c

    Article  CAS  PubMed  Google Scholar 

  158. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4(10):1700187. https://doi.org/10.1002/advs.201700187

    Article  CAS  Google Scholar 

  159. Deiner LJ, Reitz TL (2017) Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage. Adv Eng Mater 19(7). https://doi.org/10.1002/adem.201600878

  160. Qin LD, Park S, Huang L, Mirkin CA (2005) On-wire lithography. Science 309(5731):113–115. https://doi.org/10.1126/science.1112666

    Article  CAS  PubMed  Google Scholar 

  161. Wen LY, Wang ZJ, Mi Y, Xu R, Yu SH, Lei Y (2015) Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11(28):3408–3428. https://doi.org/10.1002/smll.201500120

    Article  CAS  PubMed  Google Scholar 

  162. Pang Y, Cao Y, Chu Y, Liu M, Snyder K, MacKenzie D, Cao C (2019) Additive manufacturing of batteries. Adv Funct Mater 30(1). https://doi.org/10.1002/adfm.201906244

  163. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543. https://doi.org/10.1002/adma.201301036

    Article  CAS  PubMed  Google Scholar 

  164. Wei TS, Ahn BY, Grotto J, Lewis JA (2018) 3D Printing of customized Li-Ion batteries with thick electrodes. Adv Mater 30(16):e1703027. https://doi.org/10.1002/adma.201703027

    Article  CAS  PubMed  Google Scholar 

  165. Zhang C, Shen K, Li B, Li S, Yang S (2018) Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J Mater Chem A 6(41):19960–19966. https://doi.org/10.1039/c8ta08559e

    Article  CAS  Google Scholar 

  166. Lyu Z, Lim GJH, Guo R, Kou Z, Wang T, Guan C, Ding J, Chen W, Wang J (2019) 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv Funct Mater 29(1). https://doi.org/10.1002/adfm.201806658

  167. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D Printable Graphene Composite. Sci Rep 5:11181. https://doi.org/10.1038/srep11181

    Article  PubMed  PubMed Central  Google Scholar 

  168. Maurel A, Courty M, Fleutot B, Tortajada H, Prashantha K, Armand M, Grugeon S, Panier S, Dupont L (2018) Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing. Chem Mater 30(21):7484–7493. https://doi.org/10.1021/acs.chemmater.8b02062

    Article  CAS  Google Scholar 

  169. Reyes C, Somogyi R, Niu S, Cruz MA, Yang F, Catenacci MJ, Rhodes CP, Wiley BJ (2018) Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.8b00885

    Article  Google Scholar 

  170. Lawes S, Sun Q, Lushington A, Xiao B, Liu Y, Sun X (2017) Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy 36:313–321. https://doi.org/10.1016/j.nanoen.2017.04.041

    Article  CAS  Google Scholar 

  171. Brown E, Yan P, Tekik H, Elangovan A, Wang J, Lin D, Li J (2019) 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater Design 170. https://doi.org/10.1016/j.matdes.2019.107689

  172. Saleh MS, Li J, Park J, Panat R (2018) 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78. https://doi.org/10.1016/j.addma.2018.07.006

    Article  CAS  Google Scholar 

  173. Zhang H, Yu X, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 6(5):277–281. https://doi.org/10.1038/nnano.2011.38

    Article  CAS  PubMed  Google Scholar 

  174. Pikul JH, Gang Zhang H, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732. https://doi.org/10.1038/ncomms2747

    Article  CAS  PubMed  Google Scholar 

  175. Ning H, Pikul JH, Zhang R, Li X, Xu S, Wang J, Rogers JA, King WP, Braun PV (2015) Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc Natl Acad Sci U S A 112(21):6573–6578. https://doi.org/10.1073/pnas.1423889112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen Q, Xu R, He Z, Zhao K, Pan L (2017) Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J Electrochem Soc 164(9):A1852–A1857. https://doi.org/10.1149/2.0651709jes

    Article  CAS  Google Scholar 

  177. Cohen E, Menkin S, Lifshits M, Kamir Y, Gladkich A, Kosa G, Golodnitsky D (2018) Novel rechargeable 3D-microbatteries on 3D-printed-polymer substrates: feasibility study. Electrochim Acta 265:690–701. https://doi.org/10.1016/j.electacta.2018.01.197

    Article  CAS  Google Scholar 

  178. Zhu C, Liu T, Qian F, Chen W, Chandrasekaran S, Yao B, Song Y, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2017) 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15:107–120. https://doi.org/10.1016/j.nantod.2017.06.007

    Article  CAS  Google Scholar 

  179. Nathan-Walleser T, Lazar I-M, Fabritius M, Tölle FJ, Xia Q, Bruchmann B, Venkataraman SS, Schwab MG, Mülhaupt R (2014) 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors. Adv Func Mater 24(29):4706–4716. https://doi.org/10.1002/adfm.201304151

    Article  CAS  Google Scholar 

  180. Sun G, An J, Chua CK, Pang H, Zhang J, Chen P (2015) Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem Commun 51:33–36. https://doi.org/10.1016/j.elecom.2014.11.023

    Article  CAS  Google Scholar 

  181. Liu T, Zhu C, Kou T, Worsley MA, Qian F, Condes C, Duoss EB, Spadaccini CM, Li Y (2016) Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. Chem NanoMat 2(7):635–641. https://doi.org/10.1002/cnma.201600107

    Article  CAS  Google Scholar 

  182. Zhao C, Wang C, Gorkin R, Beirne S, Shu K, Wallace GG (2014) Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem Commun 41:20–23. https://doi.org/10.1016/j.elecom.2014.01.013

    Article  CAS  Google Scholar 

  183. Yang Y, Chen Z, Song X, Zhu B, Hsiai T, Wu P-I, Xiong R, Shi J, Chen Y, Zhou Q, Shung KK (2016) Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22:414–421. https://doi.org/10.1016/j.nanoen.2016.02.045

    Article  CAS  Google Scholar 

  184. Zhu C, Liu T, Qian F, Han TY, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16(6):3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965

    Article  CAS  PubMed  Google Scholar 

  185. Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3(2):459–470. https://doi.org/10.1016/j.joule.2018.09.020

    Article  CAS  Google Scholar 

  186. Wang Y, Yao M, Ma R, Yuan Q, Yang D, Cui B, Ma C, Liu M, Hu D (2020) Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J Mater Chem A 8(3):884–917. https://doi.org/10.1039/c9ta11527g

    Article  CAS  Google Scholar 

  187. Kalsoom U, Nesterenko PN, Paull B (2018) Current and future impact of 3D printing on the separation sciences. TrAC, Trends Anal Chem 105:492–502. https://doi.org/10.1016/j.trac.2018.06.006

    Article  CAS  Google Scholar 

  188. Koning S, Janssen H-G, Brinkman UAT (2009) Modern methods of sample preparation for GC analysis. Chromatographia 69(S1):33–78. https://doi.org/10.1365/s10337-008-0937-3

    Article  Google Scholar 

  189. Wang H, Cocovi-Solberg DJ, Hu B, Miro M (2017) 3D-printed microflow injection analysis platform for online magnetic nanoparticle sorptive extraction of antimicrobials in biological specimens as a front end to liquid chromatographic assays. Anal Chem 89(22):12541–12549. https://doi.org/10.1021/acs.analchem.7b03767

    Article  CAS  PubMed  Google Scholar 

  190. Martinez-Jarquin S, Moreno-Pedraza A, Guillen-Alonso H, Winkler R (2016) Template for 3D printing a low-temperature plasma probe. Anal Chem 88(14):6976–6980. https://doi.org/10.1021/acs.analchem.6b01019

    Article  CAS  PubMed  Google Scholar 

  191. Su CK, Peng PJ, Sun YC (2015) Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater. Anal Chem 87(13):6945–6950. https://doi.org/10.1021/acs.analchem.5b01599

    Article  CAS  PubMed  Google Scholar 

  192. Martínez-Jarquín S, Moreno-Pedraza A, Cázarez-García D, Winkler R (2017) Automated chemical fingerprinting of Mexican spirits derived from Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Anal Methods 9(34):5023–5028. https://doi.org/10.1039/c7ay00793k

    Article  CAS  Google Scholar 

  193. Calderilla C, Maya F, Cerda V, Leal LO (2017) 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 175:463–469. https://doi.org/10.1016/j.talanta.2017.07.028

    Article  CAS  PubMed  Google Scholar 

  194. Calderilla C, Maya F, Cerda V, Leal LO (2018) 3D printed device for the automated preconcentration and determination of chromium (VI). Talanta 184:15–22. https://doi.org/10.1016/j.talanta.2018.02.065

    Article  CAS  PubMed  Google Scholar 

  195. Wang Z, Wang J, Li M, Sun K, Liu CJ (2014) Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci Rep 4:5939. https://doi.org/10.1038/srep05939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Thakkar H, Eastman S, Al-Naddaf Q, Rownaghi AA, Rezaei F (2017) 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS Appl Mater Interfaces 9(41):35908–35916. https://doi.org/10.1021/acsami.7b11626

    Article  CAS  PubMed  Google Scholar 

  197. Couck S, Lefevere J, Mullens S, Protasova L, Meynen V, Desmet G, Baron GV, Denayer JFM (2017) CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem Eng J 308:719–726. https://doi.org/10.1016/j.cej.2016.09.046

    Article  CAS  Google Scholar 

  198. Salazar-Aguilar AD, Quintanilla A, Vega-Díaz SM, Casas JA, Miranzo P, Osendi MI, Belmonte M (2021) Iron-based metal-organic frameworks integrated into 3D printed ceramic architectures. Open Ceram 5. https://doi.org/10.1016/j.oceram.2020.100047

  199. Mardani S, Ojala LS, Uusi-Kyyny P, Alopaeus V (2016) Development of a unique modular distillation column using 3D printing. Chem Eng Process - Process Intensif 109:136–148. https://doi.org/10.1016/j.cep.2016.09.001

    Article  CAS  Google Scholar 

  200. Worawit C, Cocovi-Solberg DJ, Varanusupakul P, Miro M (2018) In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: a proof of concept study. Talanta 185:611–619. https://doi.org/10.1016/j.talanta.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  201. Lahtinen E, Hänninen MM, Kinnunen K, Tuononen HM, Väisänen A, Rissanen K, Haukka M (2018) Porous 3D printed scavenger filters for selective recovery of precious metals from electronic waste. Adv Sustain Syst 2(10). https://doi.org/10.1002/adsu.201800048

  202. Belka M, Ulenberg S, Baczek T (2017) Fused deposition modeling enables the low-cost fabrication of porous, customized-shape sorbents for small-molecule extraction. Anal Chem 89(8):4373–4376. https://doi.org/10.1021/acs.analchem.6b04390

    Article  CAS  PubMed  Google Scholar 

  203. Konieczna L, Belka M, Okonska M, Pyszka M, Baczek T (2018) New 3D-printed sorbent for extraction of steroids from human plasma preceding LC-MS analysis. J Chromatogr A 1545:1–11. https://doi.org/10.1016/j.chroma.2018.02.040

    Article  CAS  PubMed  Google Scholar 

  204. De Middeleer G, Dubruel P, De Saeger S (2017) Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline. Anal Chim Acta 986:57–70. https://doi.org/10.1016/j.aca.2017.07.059

    Article  CAS  PubMed  Google Scholar 

  205. Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17:4318–4324

    Article  CAS  Google Scholar 

  206. Woodhouse M, Parkinson BA (2008) Combinatorial discovery and optimisation of a complex oxide with water photoelectrolysis activity. Chem Mater 20:2495–2502

    Article  CAS  Google Scholar 

  207. Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ Sci 2(1):103–112. https://doi.org/10.1039/b812177j

    Article  CAS  Google Scholar 

  208. He J, Parkinson BA (2011) Combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of alpha-Fe2O3 photoanodes. ACS Comb Sci 13(4):399–404. https://doi.org/10.1021/co200024p

    Article  CAS  PubMed  Google Scholar 

  209. Liu X, Shen Y, Yang R, Zou S, Ji X, Shi L, Zhang Y, Liu D, Xiao L, Zheng X, Li S, Fan J, Stucky GD (2012) Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett 12(11):5733–5739. https://doi.org/10.1021/nl302992q

    Article  CAS  PubMed  Google Scholar 

  210. Gregoire JM, Xiang C, Liu X, Marcin M, Jin J (2013) Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev Sci Instrum 84(2):024102. https://doi.org/10.1063/1.4790419

    Article  CAS  PubMed  Google Scholar 

  211. Gregoire JM, Xiang C, Mitrovic S, Liu X, Marcin M, Cornell EW, Fan J, Jin J (2013) Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J Electrochem Soc 160(4):F337–F342. https://doi.org/10.1149/2.035304jes

    Article  CAS  Google Scholar 

  212. Seley D, Ayers K, Parkinson BA (2013) Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb Sci 15(2):82–89. https://doi.org/10.1021/co300086h

    Article  CAS  PubMed  Google Scholar 

  213. Xiang C, Suram SK, Haber JA, Guevarra DW, Soedarmadji E, Jin J, Gregoire JM (2014) High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb Sci 16(2):47–52. https://doi.org/10.1021/co400151h

    Article  CAS  PubMed  Google Scholar 

  214. Tully JJ, Meloni GN (2020) A scientist’s guide to buying a 3D printer: how to choose the right printer for your laboratory. Anal Chem 92(22):14853–14860. https://doi.org/10.1021/acs.analchem.0c03299

    Article  CAS  PubMed  Google Scholar 

  215. Mehla S, Kandjani AE, Babarao R, Lee AF, Periasamy S, Wilson K, Ramakrishna S, Bhargava SK (2021) Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ Sci 14(1):320–352. https://doi.org/10.1039/d0ee01882a

    Article  CAS  Google Scholar 

  216. Mahyuddin MH, Shiota Y, Yoshizawa K (2019) Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal Sci Technol 9(8):1744–1768. https://doi.org/10.1039/c8cy02414f

    Article  CAS  Google Scholar 

  217. Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849. https://doi.org/10.1016/j.jclepro.2019.02.046

    Article  CAS  Google Scholar 

  218. Venvik HJ, Yang J (2017) Catalysis in microstructured reactors: short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catal Today 285:135–146. https://doi.org/10.1016/j.cattod.2017.02.014

    Article  CAS  Google Scholar 

  219. Pan X, Jiao F, Miao D, Bao X (2021) Oxide-Zeolite-based composite catalyst concept that enables syngas chemistry beyond fischer-tropsch synthesis. Chem Rev 121(11):6588–6609. https://doi.org/10.1021/acs.chemrev.0c01012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehla, S., Selvakannan, P., Mazur, M., Bhargava, S.K. (2022). Emerging Technological Applications of Additive Manufacturing. In: Bhargava, S.K., Ramakrishna, S., Brandt, M., Selvakannan, P. (eds) Additive Manufacturing for Chemical Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2293-0_7

Download citation

Publish with us

Policies and ethics