Skip to main content

Surface Modification of Additively Manufactured Materials: Adding Functionality as Fourth Dimension

  • Chapter
  • First Online:
Additive Manufacturing for Chemical Sciences and Engineering

Abstract

The emergence of additive manufacturing (AM) as an industry standard has brought unprecedented opportunity to many fields. Some examples of areas that particularly benefit from this technology include biological implantation, biomedicine, aerospace, advanced materials, automotive, tooling, and many chemical industries. This vast and growing sphere of application has prompted the need for specialised technology that enables tailor-made products. Nonetheless, the majority of printable materials currently available on the market are restricted to proprietary polymers, metal powders and ceramics, which are quickly proving to be inadequate for many applications. Typical AM processes build monofunctional structures with single materials. Hence, post-processing and surface chemical modification of AM printed materials are critical in providing a range of new functional and diverse chemical functionalities. Surface functionalization of 3D printed materials is quickly gaining significant traction as a sub-discipline, as this approach can address the technical challenges associated with optimizing the performance of AM end-user products. This chapter presents an overview of the novel post-physical treatments and surface chemical functionalization required to customize AM printed materials for a wide variety of applications. This chapter further gives indication as to the challenges associated with this field of study, including the status of research and the future avenues that may be able to exploit the true potential of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

AM:

Additive Manufacturing

ATRP:

Atom Transfer Radical Polymerization

BMP:

Bone Morphogenic Protein

DGEA:

Asparagine-glycineglutamate-alanine

DMLS:

Direct Metal Laser Sintering

DSC:

Differential Scanning Calorimetry

EBM:

Electron Beam Melting

EDM:

Electrical Discharge Machining

ESD:

Electrospray Deposition

FDM:

Fused Deposition Modelling

GFOGER:

glycine-phenylalanine-hydroxyprolineglycine-glutamate-arginine

HDI:

Hexamethylenediisocyanate

HIP:

Hot Isostatic Pressing

NP:

Nanoparticles

PEM:

Polymer Electrolyte Membrane

PEO:

Plasma Electrolytic Oxidation

PLA:

Polylactic acid

RAFT:

Reversible Addition—Fragmentation chain-transfer

RC:

Robocasting

SEM:

Scanning Electron Microscopy

SI-ATRP:

Surface-initiated Atom Transfer Radical Polymerization

SLA:

Stereolithography

SLED:

Self-limiting Electrospray Deposition

SLM:

Selective Laser Melting

UNSM:

Ultrasonic Nanocrystalline Surface Modification

UV:

Ultraviolet

XPS:

X-Ray Photoelectron Spectroscopy

References

  1. Boydston AJ, Cui J, Lee C-U, Lynde BE, Schilling CA (2020) 100th anniversary of macromolecular science viewpoint: integrating chemistry and engineering to enable additive manufacturing with high-performance polymers. ACS Macro Lett 9(8):1119–1129. https://doi.org/10.1021/acsmacrolett.0c00390

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Rexach E, Johnston TG, Jehanno C, Sardon H, Nelson A (2020) Sustainable materials and chemical processes for additive manufacturing. Chem Mater 32(17):7105–7119. https://doi.org/10.1021/acs.chemmater.0c02008

    Article  CAS  Google Scholar 

  3. Ghanem MA, Basu A, Behrou R, Boechler N, Boydston AJ, Craig SL, Lin Y, Lynde BE, Nelson A, Shen H, Storti DW (2020) The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat Rev Mater Ahead Print. https://doi.org/10.1038/s41578-020-00249-w

  4. Choi J-W, Lu Y, Wicker RB (2021) Projection microstereolithography as a micro-additive manufacturing technology: processes, materials, and applications. In, 2016. vol Copyright (C) 2021 American Chemical Society (ACS). All Rights Reserved. CRC Press, pp 101–129. doi:https://doi.org/10.1201/b19360-5

  5. Guerra MG, Volpone C, Galantucci LM, Percoco G (2018) Photogrammetric measurements of 3D printed microfluidic devices. Addit Manuf 21:53–62. https://doi.org/10.1016/j.addma.2018.02.013

    Article  CAS  Google Scholar 

  6. Hurt C, Brandt M, Priya SS, Bhatelia T, Patel J, Selvakannan PR, Bhargava S (2017) Combining additive manufacturing and catalysis: a review. Catal Sci Technol 7(16):3421–3439. https://doi.org/10.1039/C7CY00615B

    Article  CAS  Google Scholar 

  7. Femmer T, Flack I, Wessling M (2016) Additive manufacturing in fluid process engineering. Chem Ing Tech 88(5):535–552. https://doi.org/10.1002/cite.201500086

    Article  CAS  Google Scholar 

  8. Ruan X, Wang Y, Cheng N, Niu X, Chang Y-C, Li L, Du D, Lin Y (2020) Emerging applications of additive manufacturing in biosensors and bioanalytical devices. Adv Mater Technol (Weinheim, Ger) 5(7):2000171. https://doi.org/10.1002/admt.202000171

    Article  CAS  Google Scholar 

  9. Du Y, Chen J, Meng Q, Dou Y, Xu J, Shen SZ (2020) Thermoelectric materials and devices fabricated by additive manufacturing. Vacuum 178:109384. https://doi.org/10.1016/j.vacuum.2020.109384

    Article  CAS  Google Scholar 

  10. Du Y, Chen J, Meng Q, Xu J, Lu J, Paul B, Eklund P (2020) Flexible thermoelectric double-layer inorganic/organic composites synthesized by additive manufacturing. Adv Electron Mater 6(8):2000214. https://doi.org/10.1002/aelm.202000214

    Article  CAS  Google Scholar 

  11. Peterson GI, Larsen MB, Ganter MA, Storti DW, Boydston AJ (2015) 3D-printed mechanochromic materials. ACS Appl Mater Interfaces 7(1):577–583. https://doi.org/10.1021/am506745m

    Article  CAS  PubMed  Google Scholar 

  12. Lin KJ, Gu DD, Du L, Liu J (2018) Additive manufacturing (AM) technologies for clean energy applications: a review with a perspective on the role played by lasers. Lasers Eng 41(4–6):235–262

    CAS  Google Scholar 

  13. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci (Weinheim, Ger) 4 (10):n/a. https://doi.org/10.1002/advs.201700187

  14. Mahmood N, De Castro IA, Pramoda K, Khoshmanesh K, Bhargava SK, Kalantar-Zadeh K (2019) Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Storage Mater 16:455–480. https://doi.org/10.1016/j.ensm.2018.10.013

    Article  Google Scholar 

  15. Fan D, Li Y, Wang X, Zhu T, Wang Q, Cai H, Li W, Tian Y, Liu Z (2020) Progressive 3D printing technology and its application in medical materials. Front Pharmacol 11:122. https://doi.org/10.3389/fphar.2020.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galante R, Figueiredo-Pina CG, Serro AP (2019) Additive manufacturing of ceramics for dental applications: a review. Dent Mater 35(6):825–846. https://doi.org/10.1016/j.dental.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  17. Gao C, Wang C, Jin H, Wang Z, Li Z, Shi C, Leng Y, Yang F, Liu H, Wang J (2018) Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv 8(44):25210–25227. https://doi.org/10.1039/C8RA04815K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pekkanen AM, Mondschein RJ, Williams CB, Long TE (2017) 3D printing polymers with supramolecular functionality for biological applications. Biomacromol 18(9):2669–2687. https://doi.org/10.1021/acs.biomac.7b00671

    Article  CAS  Google Scholar 

  19. Sabahi N, Chen W, Wang C-H, Kruzic JJ, Li X (2020) A review on additive manufacturing of shape-memory materials for biomedical applications. JOM 72(3):1229–1253. https://doi.org/10.1007/s11837-020-04013-x

    Article  CAS  Google Scholar 

  20. Liu X, Yuk H, Lin S, Parada GA, Tang T-C, Tham E, de la Fuente-Nunez C, Lu TK, Zhao X (2018) 3D Printing of living responsive materials and devices. Adv Mater 30(4):1704821. https://doi.org/10.1002/adma.201704821

    Article  CAS  Google Scholar 

  21. Ma C, Dong Y, Ye C (2016) Improving surface finish of 3D-printed metals by ultrasonic nanocrystal surface modification. Procedia CIRP 45:319–322. https://doi.org/10.1016/j.procir.2016.02.339

    Article  Google Scholar 

  22. Wang J, Li H, Liu R, Li L, Lin Y-H, Nan C-W (2018) Thermoelectric and mechanical properties of PLA/Bi0·5Sb1·5Te3 composite wires used for 3D printing. Compos Sci Technol 157:1–9. https://doi.org/10.1016/j.compscitech.2018.01.013

    Article  CAS  Google Scholar 

  23. Wang S, Bai P, Sun M, Liu W, Li D, Wu W, Yan W, Shang J, Yu J (2019) Fabricating mechanically robust binder-free structured zeolites by 3D printing coupled with zeolite soldering: a superior configuration for CO2 capture. Adv Sci 6(17):1901317. https://doi.org/10.1002/advs.201901317

    Article  CAS  Google Scholar 

  24. Danaci S, Protasova L, Lefevere J, Bedel L, Guilet R, Marty P (2016) Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal Today 273:234–243. https://doi.org/10.1016/j.cattod.2016.04.019

    Article  CAS  Google Scholar 

  25. Van Noyen J, De Wilde A, Schroeven M, Mullens S, Luyten J (2012) Ceramic processing techniques for catalyst design: formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. Int J Appl Ceram Technol 9(5):902–910. https://doi.org/10.1111/j.1744-7402.2012.02781.x

    Article  CAS  Google Scholar 

  26. Lefevere J, Gysen M, Mullens S, Meynen V, Van Noyen J (2013) The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion. Catal Today 216:18–23. https://doi.org/10.1016/j.cattod.2013.05.020

    Article  CAS  Google Scholar 

  27. Stuecker JN, Miller JE, Ferrizz RE, Mudd JE, Cesarano J (2004) Advanced support structures for enhanced catalytic activity. Ind Eng Chem Res 43(1):51–55. https://doi.org/10.1021/ie030291v

    Article  CAS  Google Scholar 

  28. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE (2017) Three-dimensional printing of transparent fused silica glass. Nature 544(7650):337–339. https://doi.org/10.1038/nature22061

    Article  CAS  PubMed  Google Scholar 

  29. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK (2019) Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol 9:3582–3602. https://doi.org/10.1039/C9CY00518H

    Article  Google Scholar 

  30. Bernasconi R, Cuneo F, Carrara E, Chatzipirpiridis G, Hoop M, Chen X, Nelson BJ, Pané S, Credi C, Levi M, Magagnin L (2018) Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Mater Horiz 5(4):699–707. https://doi.org/10.1039/C8MH00206A

    Article  CAS  Google Scholar 

  31. Li J, Wang Y, Xiang G, Liu H, He J (2019) Hybrid additive manufacturing method for selective plating of freeform circuitry on 3D printed plastic structure. Adv Mater Technol (Weinheim, Ger) 4 (2):n/a. https://doi.org/10.1002/admt.201800529

  32. Marques-Hueso J, Jones TDA, Watson DE, Ryspayeva A, Esfahani MN, Shuttleworth MP, Harris RA, Kay RW, Desmulliez MPY (2018) A Rapid photopatterning method for selective plating of 2D and 3D microcircuitry on polyetherimide. Adv Func Mater 28(6):1704451. https://doi.org/10.1002/adfm.201704451

    Article  CAS  Google Scholar 

  33. Lee C-Y, Taylor AC, Nattestad A, Beirne S, Wallace GG (2019) 3D printing for electrocatalytic applications. Joule 3(8):1835–1849. https://doi.org/10.1016/j.joule.2019.06.010

    Article  CAS  Google Scholar 

  34. Pip P, Donnelly C, Döbeli M, Gunderson C, Heyderman LJ, Philippe L (2020) Electroless deposition of Ni–Fe alloys on scaffolds for 3D Nanomagnetism 16(44):2004099. https://doi.org/10.1002/smll.202004099

  35. Mukherjee S, Gupta R, Garg A, Bansal V, Bhargava S (2010) Influence of Zr doping on the structure and ferroelectric properties of BiFeO3 thin films. J Appl Phys 107(12). https://doi.org/10.1063/1.3436593

  36. Jian JR, Kim T, Park JS, Wang J, Kim WS (2017) High performance 3D printed electronics using electroless plated copper. 7(3):035314. https://doi.org/10.1063/1.4979173

  37. Bernasconi R, Cuneo F, Carrara E, Chatzipirpiridis G, Hoop M, Chen X, Nelson BJ, Pane S, Credi C, Levi M, Magagnin L (2018) Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Mater Horiz 5(4):699–707. https://doi.org/10.1039/C8MH00206A

    Article  CAS  Google Scholar 

  38. Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M (2007) Synthesis of triangular Au core–Ag shell nanoparticles. Mater Res Bull 42(7):1212–1220. https://doi.org/10.1016/j.materresbull.2006.10.019

    Article  CAS  Google Scholar 

  39. Huang C, Jian G, DeLisio JB, Wang H, Zachariah MR (2015) Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: a prelude to 3D printing of rocket motors. Adv Eng Mater 17(1):95–101. https://doi.org/10.1002/adem.201400151

    Article  CAS  Google Scholar 

  40. Wang X, Guo Q, Cai X, Zhou S, Kobe B, Yang J (2014) Initiator-integrated 3D printing enables the formation of complex metallic architectures. ACS Appl Mater Interfaces 6(4):2583–2587. https://doi.org/10.1021/am4050822

    Article  CAS  PubMed  Google Scholar 

  41. Mehla S, Kandjani A, Coyle V, Harrison CJ, Low MX, Kaner RB, Sabri Y, Bhargava SK (2022) Gold sunflower microelectrode arrays with dendritic nanostructures on the lateral surfaces for antireflection and surface-enhanced raman scattering. ACS Appl Nano Mater 5(2):1873–1890. https://doi.org/10.1021/acsanm.1c03501

    Article  Google Scholar 

  42. Plowman BJ, Jones LA, Bhargava SK (2015) Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem Commun (Camb) 51(21):4331–4346. https://doi.org/10.1039/c4cc06638c

    Article  CAS  Google Scholar 

  43. Plowman BJ, Bhargava SK, O’Mullane AP (2011) Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications. Analyst 136(24):5107–5119. https://doi.org/10.1039/c1an15657h

    Article  CAS  PubMed  Google Scholar 

  44. Ambrosi A, Pumera M (2018) Self‐contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv Funct Mater 28(27):1700655-n/a. https://doi.org/10.1002/adfm.201700655

  45. Ambrosi A, Moo JGS, Pumera M (2016) Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv Func Mater 26(5):698–703. https://doi.org/10.1002/adfm.201503902

    Article  CAS  Google Scholar 

  46. Kovacevich DA, Lei L, Han D, Kuznetsova C, Kooi SE, Lee H, Singer JP (2020) Self-limiting electrospray deposition for the surface modification of additively manufactured parts. ACS Appl Mater Interfaces 12(18):20901–20911. https://doi.org/10.1021/acsami.9b23544

    Article  CAS  PubMed  Google Scholar 

  47. Chisholm G, Kitson PJ, Kirkaldy ND, Bloor LG, Cronin L (2014) 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ Sci 7(9):3026–3032. https://doi.org/10.1039/C4EE01426J

    Article  CAS  Google Scholar 

  48. Hashemi HSM, Karnakov P, Hadikhani P, Chinello E, Litvinov S, Moser C, Koumoutsakos P, Psaltis D (2019) A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ Sci 12(5):1592–1604.https://doi.org/10.1039/C9EE00219G

  49. Hubesch R, Mazur M, Föger K, Selvakannan PR, Bhargava SK (2021) Zeolites on 3D-printed open metal framework structure: metal migration into zeolite promoted catalytic cracking of endothermic fuels for flight vehicles. Chem Commun 57(75):9586–9589. https://doi.org/10.1039/D1CC04246G

    Article  CAS  Google Scholar 

  50. Liu S, Liu R, Gao D, Trentin I, Streb C (2020) A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution. Chem Commun 56(60):8476–8479. https://doi.org/10.1039/D0CC03579C

    Article  CAS  Google Scholar 

  51. Ji Y, Ma Y, Ma Y, Asenbauer J, Passerini S, Streb C (2018) Water decontamination by polyoxometalate-functionalized 3D-printed hierarchical porous devices. Chem Commun 54(24):3018–3021. https://doi.org/10.1039/C8CC00821C

    Article  CAS  Google Scholar 

  52. Schneider M, Fritzsche N, Puciul-Malinowska A, Baliś A, Mostafa A, Bald I, Zapotoczny S, Taubert A (2020) Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach. Polymers 12(8):1711

    Article  CAS  Google Scholar 

  53. Kosik-Kozioł A, Graham E, Jaroszewicz J, Chlanda A, Kumar PTS, Ivanovski S, Święszkowski W, Vaquette C (2019) Surface modification of 3D printed Polycaprolactone constructs via a solvent treatment: impact on physical and osteogenic properties. ACS Biomater Sci Eng 5(1):318–328. https://doi.org/10.1021/acsbiomaterials.8b01018

    Article  CAS  PubMed  Google Scholar 

  54. Martin JH, Ashby DS, Schaedler TA (2017) Thin-walled high temperature alloy structures fabricated from additively manufactured polymer templates. Mater Des 120:291–297. https://doi.org/10.1016/j.matdes.2017.02.023

    Article  CAS  Google Scholar 

  55. Moll A, Blandin JJ, Dendievel R, Gicquel E, Pons M, Jimenez C, Blanquet E, Mercier F (2021) Coupling powder bed additive manufacturing and vapor phase deposition methods for elaboration of coated 3D Ti-6Al-4V architectures with enhanced surface properties. Surf Coat Technol 415:127130. https://doi.org/10.1016/j.surfcoat.2021.127130

    Article  CAS  Google Scholar 

  56. Cheng C, Gupta M (2017) Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition. Beilstein J Nanotechnol 8(1):1629–1636

    Article  CAS  Google Scholar 

  57. Yang Z, Yan C, Liu J, Chabi S, Xia Y, Zhu Y (2015) Designing 3D graphene networks via a 3D-printed Ni template. RSC Adv 5(37):29397–29400. https://doi.org/10.1039/c5ra03454j

    Article  CAS  Google Scholar 

  58. Hansen A, Renner M, Griesbeck AG, Büsgen T (2020) From 3D to 4D printing: a reactor for photochemical experiments using hybrid polyurethane acrylates for vat-based polymerization and surface functionalization. Chem Commun 56(96):15161–15164. https://doi.org/10.1039/D0CC06512A

    Article  CAS  Google Scholar 

  59. Peris E, Okafor O, Kulcinskaja E, Goodridge R, Luis SV, Garcia-Verdugo E, O’Reilly E, Sans V (2017) Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chem 19(22):5345–5349. https://doi.org/10.1039/C7GC02421E

    Article  CAS  Google Scholar 

  60. Amin Yavari S, Loozen L, Paganelli FL, Bakhshandeh S, Lietaert K, Groot JA, Fluit AC, Boel CHE, Alblas J, Vogely HC, Weinans H, Zadpoor AA (2016) Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl Mater Interfaces 8(27):17080–17089. https://doi.org/10.1021/acsami.6b03152

    Article  CAS  PubMed  Google Scholar 

  61. Rifai A, Tran N, Lau DW, Elbourne A, Zhan H, Stacey AD, Mayes ELH, Sarker A, Ivanova EP, Crawford RJ, Tran PA, Gibson BC, Greentree AD, Pirogova E, Fox K (2018) Polycrystalline diamond coating of additively manufactured titanium for biomedical applications. ACS Appl Mater Interfaces 10(10):8474–8484. https://doi.org/10.1021/acsami.7b18596

    Article  CAS  PubMed  Google Scholar 

  62. van Hengel IAJ, Gelderman FSA, Athanasiadis S, Minneboo M, Weinans H, Fluit AC, van der Eerden BCJ, Fratila-Apachitei LE, Apachitei I, Zadpoor AA (2020) Functionality-packed additively manufactured porous titanium implants. Mater Today Bio 7:100060. https://doi.org/10.1016/j.mtbio.2020.100060

    Article  PubMed  PubMed Central  Google Scholar 

  63. Guo Q, Cai X, Wang X, Yang J (2013) “Paintable” 3D printed structures via a post-ATRP process with antimicrobial function for biomedical applications. J Mater Chem B 1(48):6644–6649. https://doi.org/10.1039/C3TB21415J

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hubesch, R., Malik, U., Selvakannan, P., Mannepalli, L.K., Bhargava, S.K. (2022). Surface Modification of Additively Manufactured Materials: Adding Functionality as Fourth Dimension. In: Bhargava, S.K., Ramakrishna, S., Brandt, M., Selvakannan, P. (eds) Additive Manufacturing for Chemical Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2293-0_6

Download citation

Publish with us

Policies and ethics