Skip to main content

Infrared Sensing

  • Chapter
  • First Online:
Satellite Measurements of Clouds and Precipitation

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 435 Accesses

Abstract

Thermal infrared radiation is a convenient tool for cloud remote sensing. Infrared emissions from cloud tops are often considered to be a proxy of the temperature there (and hence of cloud top height) regardless of day or night. Infrared brightness temperature, however, is not always a reasonable substitute for the physical temperature of clouds and could be largely misinterpreted if analyzed without care. The chapter begins with the theory of non-scattering radiative transfer, followed by simulated infrared spectra to demonstrate the impacts of clouds on satellite measurements. The ultimate goal of this chapter is to present the utility and limitations of the satellite infrared measurements of cloud properties such as cloud top temperature, particle size, and thermodynamic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cloud optical depth, sometimes abbreviated as COD or COT (cloud optical thickness), is defined at an infrared wavelength throughout this chapter. A discussion on the wavelength dependence of cloud optical depth will be given in Sect. 8.3.2.

  2. 2.

    The wavelength is slightly offset from 11 \(\upmu \)m in order to avoid a weak absorption feature at 11 \(\upmu \)m.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohiko Masunaga .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masunaga, H. (2022). Infrared Sensing. In: Satellite Measurements of Clouds and Precipitation. Springer Remote Sensing/Photogrammetry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2243-5_7

Download citation

Publish with us

Policies and ethics