Skip to main content

Design and Implementation of Wearable Cap for Parkinson’s Population

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference on Advance Computing and Intelligent Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 428))

  • 296 Accesses

Abstract

Parkinson’s disease is a progressive neurodegenerative illness that causes movement abnormalities. Because of their dread of retropulsion, many with Parkinson’s disease refuse to leave their rooms and remain immobile. Injury-related permanent impairment exacerbates the issue. Deep brain stimulation is now the sole therapy option for the illness, but it is not accessible for everyone because it is more expensive, intrusive, and requires the installation of electrodes and a pacemaker. While existing methods fail to give long-term relief at a high cost, our discovery helps to slow the course of Parkinson’s disease non-invasively and also provides better therapy to the majority of the senior population with motor problems at a lower cost. Our concept is to create a wearable head cap with motors and drivers that would provide mechanical stimulation in the manner of the ancient Varma medical technique. As it has Bluetooth interference it can be easily connected to android and make it work accordingly. It can give care at home, making therapy outside of hospitals more convenient. We believe that our project’s originality and creativity will help us reach our aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gokul, M., Durgadevi, N., Bhuvaneshwari, R., Ramya, V., & Kumar, C. R. (2018). Rehabilitation tool for gastroparesis by the analysis of interstitial cells of Cajal (The external gastric pacmaker with a feedback of gastric potential). Journal of Gastrointestinal and Digestive System. 8. https://doi.org/10.4172/2161-069X.1000557

  2. De Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525–535.

    Article  Google Scholar 

  3. Russmann, H., Ghika, J., Villemure, J. G., Robert, B., Bogousslavsky, J., Burkhard, P. R., & Vingerhoets, F. J. (2004). Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology, 63(10), 1952–1954.

    Article  Google Scholar 

  4. Pils, K. (2016). Aspects of physical medicine and rehabilitation in geriatrics. Wiener Medizinische Wochenschrift, 166(1–2), 44–47.

    Article  Google Scholar 

  5. Colombo, M., Guaita, A., Cottino, M., Previdere, G., Ferrari, D., & Vitali, S. (2004). The impact of cognitive impairment on the rehabilitation process in geriatrics. Archives of Gerontology and Geriatrics, 38, 85–92.

    Article  Google Scholar 

  6. Opara, J. A., Brola, W., Leonardi, M., & Błaszczyk, B. (2012). Quality of life in Parkinsons disease. Journal of Medicine and Life, 5(4), 375.

    Google Scholar 

  7. Pelicioni, P. H., Lord, S. R., Okubo, Y., Sturnieks, D. L., & Menant, J. C. (2020). People with Parkinson’s disease exhibit reduced cognitive and motor cortical activity when undertaking complex stepping tasks requiring inhibitory control. Neurorehabilitation and Neural Repair, 34(12), 1088–1098.

    Article  Google Scholar 

  8. Senthilvel, G., & Amuthan, A. (2019). Application of Varmam (Physical manipulation therapy of traditional siddha medicine) for contemporary health issues: An update. Journal of Ayurveda Medical Sciences, 4(1).

    Google Scholar 

  9. O’Callaghan, C., & Lewis, S. J. (2017). Cognition in Parkinson’s disease. International Review of Neurobiology, 133, 557–583.

    Article  Google Scholar 

  10. Benabid, A. L. (2003). Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology, 13(6), 696–706.

    Article  Google Scholar 

  11. Abbruzzese, G., Marchese, R., Avanzino, L., & Pelosin, E. (2016). Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinsonism and Related Disorders, 22, S60–S64.

    Article  Google Scholar 

  12. Mazilu, S., Blanke, U., Hardegger, M., Tröster, G., Gazit, E., Dorfman, M., & Hausdorff, J. M. (March 2014). GaitAssist: A wearable assistant for gait training and rehabilitation in Parkinson’s disease. In 2014 IEEE international conference on pervasive computing and communication workshops (PERCOM WORKSHOPS) (pp. 135–137). IEEE.

    Google Scholar 

  13. Tous, F., Ferriol, P., Alcalde, M. A., Melià, M., Milosevic, B., Hardegger, M., & Roggen, D. (2014). Incorporating the rehabilitation of Parkinson’s disease in the play for health platform using a body area network. In XIII mediterranean conference on medical and biological engineering and computing 2013 (pp. 1481–1484). Springer.

    Google Scholar 

  14. Nieuwboer, A., Rochester, L., Müncks, L., & Swinnen, S. P. (2009). Motor learning in Parkinson’s disease: Limitations and potential for rehabilitation. Parkinsonism and Related Disorders, 15, S53–S58.

    Article  Google Scholar 

  15. Barry, G., Galna, B., & Rochester, L. (2014). The role of exergaming in Parkinson’s disease rehabilitation: A systematic review of the evidence. Journal of Neuroengineering and Rehabilitation, 11(1), 1–10.

    Article  Google Scholar 

  16. Delrobaei, M., Baktash, N., Gilmore, G., McIsaac, K., & Jog, M. (2017). Using wearable technology to generate objective Parkinson’s disease dyskinesia severity score: Possibilities for home monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1853–1863.

    Article  Google Scholar 

  17. Rodgers, M. M., Pai, V. M., & Conroy, R. S. (2014). Recent advances in wearable sensors for health monitoring. IEEE Sensors Journal, 15(6), 3119–3126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gokul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gokul, M., Surekha, S., Monisha, R., Nithya, A.N., Anisha, M. (2023). Design and Implementation of Wearable Cap for Parkinson’s Population. In: Pati, B., Panigrahi, C.R., Mohapatra, P., Li, KC. (eds) Proceedings of the 6th International Conference on Advance Computing and Intelligent Engineering. Lecture Notes in Networks and Systems, vol 428. Springer, Singapore. https://doi.org/10.1007/978-981-19-2225-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2225-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2224-4

  • Online ISBN: 978-981-19-2225-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics