Skip to main content

3D Simulation Study of Laterally Gated AlN/β-Ga2O3 HEMT Technology for RF and High-Power Nanoelectronics

  • Chapter
  • First Online:
HEMT Technology and Applications

Abstract

In this work, we present the effect of buried gate dimensions on electron mobility in a laterally gated AlN/β-Ga2O3 high-electron-mobility-transistor (HEMT) using 3D numerical simulations. The recessed parts of the gate laterally control the two-dimensional-electron-gas (2DEG) density in the channel as opposed to vertical control in the conventional planar HEMT. The constant low-field mobility model accounting for lattice temperature and field-dependent mobility model accounting for negative differential carrier mobility are evoked to analyze the electric field and carrier concentration by varying the channel width (WC). A maximum drain current density of 0.8 and ~1 A/mm is obtained using a constant low-field and field-dependent mobility model, respectively, in the device with a gate length (LG) of 0.1 µm and channel width of 100 nm. It is found that with increasing bias voltage, electron mobility starts decreasing due to rising lattice temperature in the constant low-field mobility model, whereas higher electric field-led carrier velocity saturation is attributed to lower mobility in the field-dependent mobility model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 3–6 (2012). https://doi.org/10.1063/1.3674287

    Article  Google Scholar 

  2. R. Singh et al., The dawn of Ga2O3 HEMTs for high power electronics—a review. Mater. Sci. Semicond. Process. 119, 105216 (2020). https://doi.org/10.1016/j.mssp.2020.105216

  3. N. Ma et al., Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 109(21), 212101 (2016). https://doi.org/10.1063/1.4968550

    Article  Google Scholar 

  4. M.D. Santia, N. Tandon, J.D. Albrecht, Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107(4) (2015). https://doi.org/10.1063/1.4927742

  5. T. Palacios et al., Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 52(10), 2117–2122 (2005). https://doi.org/10.1109/TED.2005.856180

    Article  Google Scholar 

  6. T. Fang, R. Wang, G. Li, H. Xing, S. Rajan, D. Jena, Effect of optical phonon scattering on the performance limits of ultrafast GaN transistors. Device Research Conference, vol. 33(5) (2011), pp. 273–274. https://doi.org/10.1109/DRC.2011.5994529

  7. C.H. Chen et al., The causes of GaN HEMT bell-shaped transconductance degradation. Solid. State. Electron. 126, 115–124 (2016). https://doi.org/10.1016/j.sse.2016.09.005

    Article  Google Scholar 

  8. K. Shinohara et al., Self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG, in 2012 International Electron Devices Meeting (2012), pp. 27.2.1–27.2.4. https://doi.org/10.1109/IEDM.2012.6479113

  9. R. Singh, T.R. Lenka, H.P.T. Nguyen, Optimization of dynamic source resistance in a β-Ga2O3 HEMT and Its effect on electrical characteristics. J. Electron. Mater. 49(9), 5266–5271 (2020). https://doi.org/10.1007/s11664-020-08261-0

    Article  Google Scholar 

  10. S. Bajaj et al., Graded AlGaN channel transistors for improved current and power gain linearity. IEEE Trans. Electron Devices 64(8), 3114–3119 (2017). https://doi.org/10.1109/TED.2017.2713784

    Article  Google Scholar 

  11. H. Lu et al., AlN/GaN/InGaN coupling-channel HEMTs for improved g2098 and gain linearity. IEEE Trans. Electron Devices 1–6 (2021). https://doi.org/10.1109/TED.2021.3082104

  12. O. Odabasi et al., AlGaN/GaN-based laterally gated high-electron-mobility transistors with optimized linearity. IEEE Trans. Electron Devices 68(3), 1016–1023 (2021). https://doi.org/10.1109/TED.2021.3053221

    Article  Google Scholar 

  13. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122(3), 035702 (2017). https://doi.org/10.1063/1.4986174

    Article  Google Scholar 

  14. E. Ture et al., Performance and parasitic analysis of sub-micron scaled tri-gate AlGaN/GaN HEMT design. Eur. Microw. Week 2015, 97–100 (2015). https://doi.org/10.1109/EuMIC.2015.7345077

    Article  Google Scholar 

  15. Z. Xia et al., β-Ga 2 O 3 Delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052–1055 (2019). https://doi.org/10.1109/LED.2019.2920366

    Article  Google Scholar 

  16. Device Simulation Software, ATLAS User’s manual (Silvaco, Santa Clara, CA, USA, 2019)

    Google Scholar 

  17. A. Mock et al., Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Phys. Rev. B 96(24), 1–14 (2017). https://doi.org/10.1103/PhysRevB.96.245205

    Article  Google Scholar 

  18. S. Poncé, F. Giustino, Structural, electronic, elastic, power, and transport properties of β-Ga2O3 from first principles. Phys. Rev. Res. 2(3), 033102 (2020)

    Article  Google Scholar 

  19. Y. Zhang et al., Evaluation of low-temperature saturation velocity in β-(AlxGa1−x)2O3/Ga2O3 modulation-doped field-effect transistors. IEEE Trans. Electron Devices 66(3), 1574–1578 (2019). https://doi.org/10.1109/TED.2018.2889573

    Article  Google Scholar 

  20. S.A.O. Russell et al., Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET with reduced self heating. IEEE J. Electron Devices Soc. 5(4), 256–261 (2017). https://doi.org/10.1109/JEDS.2017.2706321

    Article  Google Scholar 

  21. H. Sun et al., Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl. Phys. Lett. 111(16), 162105 (2017). https://doi.org/10.1063/1.5003930

    Article  Google Scholar 

  22. J.-X. Chen et al., Band alignment of AlN/β-Ga2O3 heterojunction interface measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 112(26), 261602 (2018). https://doi.org/10.1063/1.5035372

    Article  Google Scholar 

  23. S. Lyu, A. Pasquarello, Band alignment at β-Ga2O3/III-N (III = Al, Ga) interfaces through hybrid functional calculations. Appl. Phys. Lett. 117(10), 102103 (2020). https://doi.org/10.1063/5.0020442

    Article  Google Scholar 

  24. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A Performance Comparison Between β-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019). https://doi.org/10.1109/TED.2019.2924453

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institute of Technology Silchar for providing the necessary facilities to carry out the research with international collaboration with the New Jersey Institute of Technology, New Jersey, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Lenka, T.R., Nguyen, H.P.T. (2023). 3D Simulation Study of Laterally Gated AlN/β-Ga2O3 HEMT Technology for RF and High-Power Nanoelectronics. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics