Skip to main content

Breakdown Mechanisms and Scaling Technologies of AlGaN/GaN HEMTs

  • Chapter
  • First Online:
HEMT Technology and Applications
  • 1135 Accesses

Abstract

Breakdown mechanisms play a significant role in determining the performance of AlGaN/GaN HEMTs in high-power circuit applications. This chapter presents a brief overview of various factors, which cause an early breakdown in AlGaN/GaN HEMT at high drain voltage. The chapter also covers technological advancements proposed so far by various research groups to enhance the breakdown voltage of the device. Further, scaling technologies are discussed to improve the high-frequency performance of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Zeng et al., A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability, Electron. 7, (12) (2018). https://doi.org/10.3390/electronics7120377

  2. G. Meneghesso, M. Meneghini, E. Zanoni, Breakdown mechanisms in AlGaN/GaN HEMTs: An overview, Jpn J. Appl. Phys. 53(10). Japan Soc. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.100211

  3. A. Goswami, R.J. Trew, G.L. Bilbro, Modeling of the gate leakage current in AlGaN/GaN HFETs. IEEE Trans. Electron Devices 61(4), 1014–1021 (2014). https://doi.org/10.1109/TED.2014.2302797

    Article  Google Scholar 

  4. A. Wang, L. Zeng, W. Wang, Simulation of gate leakage current of AlGaN/GaN HEMTs: Effects of the gate edges and self-heating. ECS J. Solid State Sci. Technol. 6(11), S3025–S3029 (2017). https://doi.org/10.1149/2.0031711jss

    Article  Google Scholar 

  5. R. Chu et al., 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on -resistance. IEEE Electron Device Lett. 32(5), 632–634 (2011). https://doi.org/10.1109/LED.2011.2118190

    Article  Google Scholar 

  6. M. Baeumler et al., Investigation of leakage current of AlGaN/GaN HEMTs under pinch-off condition by electroluminescence microscopy. J. Electron. Mater. 39(6), 756–760 (2010). https://doi.org/10.1007/s11664-010-1120-9

    Article  Google Scholar 

  7. B. Lu, E. L. Piner, T. Palacios, Breakdown Mechanism in AlGaN/GaN HEMTs on Si Substrate, in Device Research Conference—Conference Digest, DRC, pp. 193–194 (2010). https://doi.org/10.1109/DRC.2010.5551907

  8. W. Saito, T. Suwa, T. Uchihara, T. Naka, T. Kobayashi, Breakdown behaviour of high-voltage GaN-HEMTs. Microelectron. Reliab. 55(9–10), 1682–1686 (2015). https://doi.org/10.1016/j.microrel.2015.06.126

    Article  Google Scholar 

  9. T. Asano, N. Yamada, T. Saito, H. Tokuda, M. Kuzuhara, Breakdown Characteristics in AlGaN/GaN HEMTs with Multi-field-plate Structure, in IMFEDK 2012—2012 International Meeting for Future of Electron Devices, Kansai, pp. 100–101 (2012). https://doi.org/10.1109/IMFEDK.2012.6218601

  10. Q. Zhou et al., Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement. IEEE Trans. Electron Devices 60(3), 1075–1081 (2013). https://doi.org/10.1109/TED.2013.2241439

    Article  Google Scholar 

  11. S. Chander, S. Gupta, Ajay, M. Gupta, Enhancement of breakdown voltage in AlGaN/GaN HEMT using passivation technique for microwave application, Superlattices Microstruct. 120, 217–222 (2018). https://doi.org/10.1016/j.spmi.2018.05.039

  12. C. Yang et al., High breakdown voltage and low dynamic ON-resistance AlGaN/GaN HEMT with fluorine ion implantation in SiNx passivation layer, Nanoscale Res. Lett. 14 (2019). https://doi.org/10.1186/s11671-019-3025-8

  13. Y.J. Lee et al., High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers. Nanoscale Res. Lett. 9(1), 1–9 (2014). https://doi.org/10.1186/1556-276X-9-433

    Article  Google Scholar 

  14. R. Tomita, S. Ueda, T. Kawada, H. Mitsuzono, K. Horio, Analysis of dependence of breakdown voltage on gate-drain distance in AlGaN/GaN HEMTs with high-k passivation layer. IEEE Trans. Electron Devices 68(4), 1550–1556 (2021). https://doi.org/10.1109/TED.2021.3060353

    Article  Google Scholar 

  15. B. Duan, L. Yang, Y. Wang, Y. Yang, Experimental results for AlGaN/GaN HEMTs improving breakdown voltage and output current by electric field modulation. IEEE Trans. Electron Devices 68(5), 2240–2245 (2021). https://doi.org/10.1109/TED.2021.3067865

    Article  Google Scholar 

  16. Y. Zhang et al., High-performance AlGaN double channel HEMTs with improved drain current density and high breakdown voltage, Nanoscale Res. Lett. 15(1) (2020). https://doi.org/10.1186/s11671-020-03345-6

  17. T. Liu et al., Suppression of the regrowth interface leakage current in AlGaN/GaN HEMTs by unactivated Mg doped GaN layer, Appl. Phys. Lett. 118(7) (2021). https://doi.org/10.1063/5.0034584

  18. I. Abid et al., High lateral breakdown voltage in thin channel AlGaN/GaN high electron mobility transistors on AlN/Sapphire Templates, Micromachines 10(10) (2019). https://doi.org/10.3390/mi10100690

  19. Y. Dai, J. Zhou, J. Chen, M. Han, Scaling technologies for millimeter-wave GaN-HEMTs, in 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 2012, pp. 1–3,https://doi.org/10.1109/IMWS2.2012.6338180

  20. K. Shinohara et al., Scaling of gan hemts and schottky diodes for submillimeter-wave mmic applications. IEEE Trans. Electron Devices 60(10), 2982–2996 (2013). https://doi.org/10.1109/TED.2013.2268160

    Article  Google Scholar 

  21. K.C. Sahoo, C.-I. Kuo, Y. Li, E.Y. Chang, Novel metamorphic HEMTs with highly doped InGaAs source/drain regions for high frequency applications. IEEE Trans. Electron Devices 57(10), 2594–2598 (2010). https://doi.org/10.1109/TED.2010.2062521

    Article  Google Scholar 

  22. A.G. Baca et al., An AlN/Al<inf>0.85</inf>Ga<inf>0.15</inf>N High Electron Mobility Transistor with a Regrown Ohmic Contact, in 2016 74th Annual Device Research Conference (DRC), Jun. 2016, pp. 1–2. https://doi.org/10.1109/DRC.2016.7548395

  23. N.S. Garigapati, F. Lindelöw, L. Södergren, E. Lind, Capacitance scaling in In0.71Ga0.29As/InP MOSFETs with self-aligned a: Si spacers. IEEE Trans. Electron Devices 68(8), 3762–3767 (2021). https://doi.org/10.1109/TED.2021.3092299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Kabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabra, S., Gupta, M. (2023). Breakdown Mechanisms and Scaling Technologies of AlGaN/GaN HEMTs. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics