Skip to main content

Smart Home Technologies Toward SMART (Specific, Measurable, Achievable, Realistic, and Timely) Outlook

  • Conference paper
  • First Online:
Mobile Computing and Sustainable Informatics

Abstract

Smart home and its associated concepts are familiar among home users and industries for a long known time. However, the lack of awareness and Specific, Measurable, Achievable, Realistic, and Timely (SMART) knowledge, the future for technology adoption in homes is still far away. The current research article provides a view on the state-of-the-art technologies of smart homes, how it impacts the daily life activities and SMART tool which is used to design, develop, construct, and achieve smart home goals. This research article enlists all the studies conducted in smart homes with different viewpoints followed by explaining the SMART tool that is used to set initial goal and plan to attain final goal. The authors compared and contrasted the role played by IoT in smart homes and how wireless protocols are deployed in smart home applications. The paper provides a summary on the significant applications on the basis of comfort, convenience, safety, and security. The paper also explains the sustainable nature of smart homes as zero net energy home and in connection with Leadership in Energy and Environmental Design (LEED). The review attained its SMART goal that is aimed at decoding the wireless protocol in order to suit the smart home applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paetz, A., Dütschke, E., Fichtner, W.: Smart homes as a means to sustainable energy consumption: a study of consumer perceptions. J. Consum. Policy 35, 23–41 (2012). https://doi.org/10.1007/s10603-011-9177-2

  2. Hartono, S., Mursid, S., Prajogo, S.: Review: Home energy management system in a smart grid scheme to improve reliability of power systems. IOP Conf. Ser. Earth Environ. Sci. 105 (2018). https://doi.org/10.1088/1755-1315/105/1/012081

  3. Kakran, S., Chanana, S.: Smart operations of smart grids integrated with distributed generation: a review. Renew. Sustain. Energ. Rev. 81(1), 524–535 (2018)

    Google Scholar 

  4. Sovacool, B.K., Del Rio, D.D.F.: Smart home technologies in Europe: a critical review of concepts, benefits, risks and policies. Renew. Sustain. Energ. Rev. 120 (2020)

    Google Scholar 

  5. Ford, R., Pritoni, M., Sanguinetti, A., Karlin, B.: Categories and functionality of smart home technology for energy management. Build. Environ. 123, 543–554 (2017)

    Article  Google Scholar 

  6. Khan, M., Han, K., Karthik, S.: Designing smart control systems based on internet of things and big data analytics. Wirel. Pers. Commun. 99, 1683–1697 (2018). https://doi.org/10.1007/s11277-018-5336-y

  7. Mocrii, D., Chen, Y., Musilek, P.: IoT-based smart homes: a review of system architecture, software, communications, privacy and security. Internet Things, 1–2, 81–98 (2018)

    Google Scholar 

  8. Bhattacharyya, R., Das, A., Majumdar, A., Ghosh, P.: Real-time scheduling approach for iot-based home automation system. In: Sharma, N., Chakrabarti, A., Balas, V. (eds.) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol. 1016. Springer, Singapore (2019)

    Google Scholar 

  9. González-Romera, E., Romero-Cadaval, E., Garrido-Zafra, J., Florencias-Oliveros, O., Ruiz-Cortés, M., Moreno-Munoz, A., González-de-la-Rosa, J.-J.: Demand and storage management in a prosumernanogrid based on energy forecasting. Electronics 9(2), 363 (2020). https://doi.org/10.3390/electronics9020363

    Article  Google Scholar 

  10. Kang, W.M., Moon, S.Y., Park, J.H.: An enhanced security framework for home appliances in smart home. Hum. Cent. Comput. Inf. Sci. 7(6) (2017). https://doi.org/10.1186/s13673-017-0087-4

  11. Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., Obaidat, M.S.: An advanced internet of thing based security alert system for smart home. In: 2017 International Conference on Computer, Information and Telecommunication Systems (CITS). Dalian, pp. 25–29 (2017). https://doi.org/10.1109/CITS.2017.8035326

  12. Jose, A., Malekian, R.: Improving smart home security: integrating logical sensing into smart home. IEEE Sens. J. 1–1 (2017). https://doi.org/10.1109/JSEN.2017.2705045

  13. Durugkar, S., Poonia, R.C.: Optimum utilization of natural resources for home garden using wireless sensor networks. J. Inf. Optim. Sci. 38(6), 1077–1085 (2017). https://doi.org/10.1080/02522667.2017.1380391

    Article  Google Scholar 

  14. Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., Mora-Pascual, J., Mora-Martínez, J.: Developing ubiquitous sensor network platform using internet of things: application in precision agriculture. Sensors 16(7), 1141 (2016). https://doi.org/10.3390/s16071141

  15. Bogdan-CosminChifor, I.B., Victor-ValeriuPatriciu, F.P.: A security authorization scheme for smart home internet of things devices. Futur. Gener. Comput. Syst. 86, 740–749 (2018)

    Article  Google Scholar 

  16. Saeed, F., Paul, A., Rehman, A., Hong, W.H., Seo, H.: IoT-based intelligent modeling of smart home environment for fire prevention and safety. J. Sens. Actuator Netw. 7, 11 (2018)

    Google Scholar 

  17. Davies, F.J., Gregory Bernardo : Mass notification requirements for our children’s schools. In: Fennelly, L.J., Perry, M.A. (eds.) The Handbook for School Safety and Security, Chap. 10, pp. 91–97. Butterworth-Heinemann, UK (2014)

    Google Scholar 

  18. Cheng, M.Y., Chiu, K.C., Hsieh, Y.M., Yang, I.T., Chou, J.S., Wu, Y.W.:BIM integrated smart monitoring technique for building fire prevention and disaster relief. Autom. Constr. 84, 14–30 (2017)

    Google Scholar 

  19. Phangbertha, L.N., Fitri, A., Purnamasari, I., Muliono, M.: Smart socket for electricity control in home environment. Procedia Comput. Sci. 157, 465–472 (2019)

    Google Scholar 

  20. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of internet of things: a case study of the smart plug system. IEEE Internet Things J. 4(6), 1899–1909 (2017). https://doi.org/10.1109/JIOT.2017.2707465

  21. Yared, R., Abdulrazak, B.: Risk analysis and assessment to enhance safety in a smart kitchen. Fire Technol. 54, 555–577 (2018). https://doi.org/10.1007/s10694-017-0696-5

  22. Castorani, V., Rossi, M., Germani, M., Mandolini, M., Vita, A.: Life cycle assessment of home smart objects: kitchen hood cases. Procedia CIRP 69, 499–504 (2018)

    Article  Google Scholar 

  23. Hadis, M.S., Palantei, E., Ilham, A.A., Hendra, A.: Design of smart lock system for doors with special features using bluetooth technology. In: 2018 International Conference on Information and Communications Technology (ICOIACT). Yogyakarta, pp. 396–400, (2018). https://doi.org/10.1109/ICOIACT.2018.8350767

  24. Kassem, S.E.M., Jamous, G., Saad, E., Geagea M.: A smart lock system using Wi-Fi security. In:2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, pp. 222–225 (2016), pp. 222–225. https://doi.org/10.1109/ACTEA.2016.7560143

  25. Koo, D.D., Lee, J.J., Sebastiani, A., Kim, J.: An internet-of-things (iot) system development and implementation for bathroom safety enhancement. Procedia Eng. 145, 396–403 (2016)

    Google Scholar 

  26. Jing, Y., Hongyan, W.: Design and implementation of urban intelligent public toilets in the big data era. In: 2019 Chinese Automation Congress (CAC), Hangzhou, China, pp. 1244-1249 (2019). https://doi.org/10.1109/CAC48633.2019.8996250

  27. Bae, J., Lee, H.: User health information analysis with a urine and feces separable smart toilet system. IEEE Access. 6, 78751–78765 (2018). https://doi.org/10.1109/ACCESS.2018.2885234

  28. El Zouka, H.A., Hosni, M.M.: Secure IoT communications for smart healthcare monitoring system, Internet of Things 100036 (2019)

    Google Scholar 

  29. Nath, R.K., Bajpai, R., Thapliyal, H.: IoT based indoor location detection system for smart home environment. In: 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–3. Las Vegas, NV (2018). https://doi.org/10.1109/ICCE.2018.8326225

  30. Kalla, A., Prombage, P.,Liyanage, M.: Introduction to IoT. In: Liyanage, M., Braeken, A., Kumar, P., Ylianttila, M. (eds.) IoT Security (2020). https://doi.org/10.1002/9781119527978.ch1

  31. Min-Allah, N., Alrashed, S.: Smart campus—a sketch. Sustain. Cities Soc. 59, 102231 (2020)

    Google Scholar 

  32. Glissa, G., Meddeb, A.: 6LowPSec: an end-to-end security protocol for 6LoWPAN. Ad Hoc Netw. 82, 100-112 (2019)

    Google Scholar 

  33. Yeole, A., Kalbande, D.R., Sharma, A.: Security of 6LoWPAN iot networks in hospitals for medical data exchange. Procedia Comput. Sci. 152, 212–221 (2019)

    Google Scholar 

  34. ISMAILI, I.M.A.N.E., Azyat, A., Raissouni, N., Achhab, N.B., Chahboun, A., Lahraoua, M.: Comparative Study of ZigBee and 6LoWPAN Protocols: Review (2019). https://doi.org/10.4108/eai.24-4-2019.2284215

  35. Danbatta S.J., Varol A.: Comparison of Zigbee, z-wave, wi-fi, and bluetooth wireless technologies used in home automation. In: 2019 7th International Symposium on Digital Forensics and Security (ISDFS), pp. 1–5. Barcelos, Portugal (2019). https://doi.org/10.1109/ISDFS.2019.8757472

  36. Shailendra E., Bhatia, P.K.: Analyzing home automation and networking technologies. IEEE Potentials 37(1), 27–33 (2018). https://doi.org/ https://doi.org/10.1109/MPOT.2015.2493184

  37. Khan W.M., Zualkernan, I.A.: SensePods: a ZigBee-based tangible smart home interface. IEEE Trans. Consum. Electron. 64(2), 145–152 (2018). https://doi.org/10.1109/TCE.2018.2844729

  38. Badenhop, C.W., Graham, S.R., Ramsey, B.W., Mullins, B.E., Mailloux, L.O.: The Z-Wave routing protocol and its security implications. Comput. Secur. 68, 112–129 (2017)

    Article  Google Scholar 

  39. https://z-wavealliance.org/about_z-wave_technology/. Accessed 21 08 2021

  40. Hofer-Schmitz, K., Stojanović, B.: Towards formal verification of IoT protocols: a Review. Comput. Netw. 174, 107233 (2020)

    Google Scholar 

  41. Cheruvu, S., Kumar, A., Smith, N., Wheeler, D.M.: Connectivity technologies for IoT. In: Demystifying Internet of Things Security. Apress, Berkeley, CA (2020)

    Google Scholar 

  42. Khan, M.A., Cherif, W., Filali, F., Hamila, R.: Wi-Fi direct research ‐ current status and future perspectives. J. Netw. Comput. Appl. 93, 245–258 (2017)

    Google Scholar 

  43. Naik, S., Souza, M.D.: Efficient power saving method for WiFi direct devices in IoT based on Hidden Markov Model. In: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), pp. 565–567, Bengaluru, India (2019). https://doi.org/10.1109/COMSNETS.2019.8711299

  44. Shen, W., Yin, B., Cao, X.,Cai, L., Cheng, Y.: Secure device-to-device communications over WiFi direct. IEEE Netw. 30, 4–9 (2016). https://doi.org/10.1109/MNET.2016.7579020

  45. Lauridsen, M., Kovacs, I. Z., Mogensen, P., Sorensen, M., Holst, S.: Coverage and capacity analysis of LTE-M and NB-IoT in a rural area. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–5, Montreal, QC (2016). https://doi.org/10.1109/VTCFall.2016.7880946

  46. Borkar, S.R.: 7—Long-term evolution for machines (LTE-M). In: Chaudhari, B.S., Zennaro, M. (eds.) LPWAN Technologies for IoT and M2M Applications, pp. 145–166. Academic Press (2020)

    Google Scholar 

  47. Díaz-Zayas, A., García-Pérez, C.A., Recio-Pérez, Á.M., Merino, P.: 3GPP standards to deliver LTE connectivity for IoT. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 283–288. Berlin (2016). https://doi.org/ https://doi.org/10.1109/IoTDI.2015.26

  48. Lin, X., et al.: Positioning for the internet of things: a 3gpp perspective. IEEE Commun. Mag. 55(12), 179–185 (2017). https://doi.org/10.1109/MCOM.2017.1700269

  49. Sinha, R.S., Wei, Y., Hwang, S.H.: A survey on LPWA technology: LoRa and NB-IoT. ICT Express. 3, (1), 14–21 (2017)

    Google Scholar 

  50. Mekki, K., Bajic, E., Chaxel, F., Meyer, F.: A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 5(1), 1–7 (2019)

    Article  Google Scholar 

  51. Sahib, U.: Smart dubai: sensing dubai smart city for smart environment management. In: Vinod Kumar, T. (eds.) Smart Environment for Smart Cities. Advances in 21st Century Human Settlements. Springer, Singapore (2020)

    Google Scholar 

  52. Mekki, K., Bajic, E., Chaxel¸ F., Meyer, F.: Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 197–202. Athens (2018). https://doi.org/10.1109/PERCOMW.2018.8480255

  53. Popli, S., Jha, R.K., Jain, S.: A Survey on energy efficient narrowband internet of things (NBIoT): architecture, application and challenges. IEEE Access 7, 16739–16776(2019). https://doi.org/10.1109/ACCESS.2018.2881533

  54. Mwakwata, C.B., Malik, H., MahtabAlam, M., Le Moullec, Y., Parand, S., Mumtaz, S.: Narrowband internet of things (NB-IoT): from physical (PHY) and media access control (MAC) layers perspectives. Sensors 19, 2613 (2019)

    Article  Google Scholar 

  55. Naoui, S., Elhdhili, M.E., AzouzSaidane,L.: Novel enhanced LoRaWAN framework for smart home remote control security. Wirel. Pers. Commun. 110, 2109–2130 (2020). https://doi.org/10.1007/s11277-019-06832-x

  56. Naoui, S., Elhdhili, M.E., Saidane, L.A.: Trusted third party based key management for enhancing LoRaWAN security. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 1306–1313. Hammamet (2017). https://doi.org/10.1109/AICCSA.2017.73

  57. Codeluppi, G., Cilfone, A., Davoli, L., Ferrari, G.: LoRaFarM: A LoRaWAN-based smart farming modular iot architecture. Sensors (Basel) 20(7), 2028 (2020). https://doi.org/10.3390/s20072028

  58. Borrero, J.D., Zabalo, A.: An autonomous wireless device for real-time monitoring of water needs. Sensors (Basel) 20(7), 2078 (2020). https://doi.org/10.3390/s20072078.

  59. Doucek, P., Pavlicek, A., Luc, L.: Internet of things or surveillance of things?. In: Tjoa, A., Zheng, L.R., Zou, Z., Raffai, M., Xu, L., Novak, N. (eds.) Research and Practical Issues of Enterprise Information Systems. Confenis 2017. Lecture Notes in Business Information Processing, vol. 310. Springer, Cham (2018)

    Google Scholar 

  60. Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M., Ismail, M.: Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17, 1781 (2017)

    Google Scholar 

  61. Scuro, C., Sciammarella, P.F., Lamonaca, F., Olivito, R.S., Carni, D.L.: IoT for structural health monitoring. IEEE Instrum. Measur. Mag. 21(6), 4–14 (2018). https://doi.org/10.1109/MIM.2018.8573586

  62. Sungheetha, A., Sharma, R.: Real Time monitoring and fire detection using internet of things and cloud based drones. J. Soft Comput. Paradigm (JSCP) 03, 168–174 (2020)

    Article  Google Scholar 

  63. Chen, J.I., Zong, L.-T.: Graphene based web framework for energy efficient iot applications. J. Inf. Technol. 01, 18–28 (2021)

    Google Scholar 

  64. Hamdan, Y.B.: Smart home environment future challenges and issues a survey. J. Electron. 3(01), 239–246 (2021)

    Google Scholar 

  65. Sathesh, A.: Computer vision on IOT based patient preference management system. J. of Trends Comput. Sci. Smart Technol. 2, 68–77 (2020)

    Article  Google Scholar 

  66. Patil, P.J., Zalke, R.V., Tumasare, K.R., Shiwankar, B.A., Singh, S.R., Sakhare, S.: IoT protocol for accident spotting with medical facility. J. Artif. Intell. 3(02), 140–150 (2021)

    Google Scholar 

  67. Schieweck, A., Uhde, E., Salthammer, T., Salthammer, L.C., Morawska, L., Mazaheri, M., Kumar, P.: Smart homes and the control of indoor air quality. Renew. Sustain. Energ. Rev. 94, 705–718 (2018)

    Google Scholar 

  68. Irshad, K., Habib, K., Saidur, R., Kareem, M.W., Saha, B.B.: Study of thermoelectric and photovoltaic facade system for energy efficient building development: a review. J. of Cleaner Prod. 209, 1376–1395 (2019) ISSN 0959–6526

    Google Scholar 

  69. AlFaris, F., Juaidi, A., Manzano-Agugliaro, F.: Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energ. Buildings 153, 262–274

    Google Scholar 

  70. Altomonte, S., Schiavon, S., Kent, M.G., Brager, G.: Indoor environmental quality and occupant satisfaction in green-certified buildings. Building Res. Inf. 47(3), 255–274 (2019). https://doi.org/10.1080/09613218.2018.1383715

    Article  Google Scholar 

  71. Lee, E.: Indoor environmental quality (IEQ) of LEED-certified home: importance-performance analysis (IPA). Building Environ. 149, 571–581 (2019) ISSN 0360–1323

    Google Scholar 

  72. Hu, M., Qiu, Y.: A comparison of building energy codes and policies in the USA, Germany, and China: progress toward the net-zero building goal in three countries. Clean Technol. Environ. Policy 21, 291–305 (2019). https://doi.org/10.1007/s10098-018-1636-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vinoth Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinoth Kumar, P. et al. (2022). Smart Home Technologies Toward SMART (Specific, Measurable, Achievable, Realistic, and Timely) Outlook. In: Shakya, S., Ntalianis, K., Kamel, K.A. (eds) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-19-2069-1_49

Download citation

Publish with us

Policies and ethics