Skip to main content

Investigation and Optimization of Surface Roughness and Material Removal Rate in Face Finishing Milling of Ti-6Al-4V Under MQL Condition

  • Conference paper
  • First Online:
The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering (RCTEMME 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

This experimental study presents a combination of Machine learning and Artificial Neural Network to solve a multiple objective optimization problem in finishing milling of Titanium Alloys Ti-6Al-4V under a minimum quantity lubrication (MQL) environment. The three milling technological parameters, such as feed per tooth, cutting speed and depth of cut; and two lubrication parameters including air pressure and lubricant flow rate are considered as the variants. The approach of this work is to minimize the cut value of surface roughness and maximize the production rate at the same time. The Support Vector Machine (SVM) is applied to generate the regression vectors, then the artificial neural algorithm Non-dominated Sorting Genetic Algorithm (NSGA II) is used to find the optimum technological and lubrication input. The ANOVA analysis is also used to predict the influence of input factors on surface roughness and production rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Unfallversicherung, D.G.: BIG/GUV-I718E: Minimum Quantity Lubrication for Maching Operations. Deutsche Gesetzliche (2010). https://fdokument.com/document/lubrificazione-minimale.html

  2. Sen, B., Mia, M., Krolczyk, G.M., Mandal, U.K., Mondal, S.P.: Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 8(1), 249–280 (2019). https://doi.org/10.1007/s40684-019-00158-6

    Article  Google Scholar 

  3. Debnath, S., Reddy, M.M., Yi, Q.S.: Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Clean. Prod. 83, 33–47 (2014). https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  4. Sarikaya, M., et al.: Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. J. Manuf. Process. 62, 179–201 (2021). https://doi.org/10.1016/j.jmapro.2020.12.013

    Article  Google Scholar 

  5. Ekinovic, E., Begović, E., Prcanovic, H.: MQL machining of difficult to cut materials (2013)

    Google Scholar 

  6. Carou, D., Davim, J.P. (eds.): Machining of Light Alloys: Aluminum, Titanium, and Magnesium. CRC Press, Boca Raton (2018)

    Google Scholar 

  7. Park, K.-H., Yang, G.-D., Lee, M.-G., Jeong, H., Lee, S.-W., Lee, D.Y.: Eco-friendly face milling of titanium alloy. Int. J. Precis. Eng. Manuf. 15(6), 1159–1164 (2014). https://doi.org/10.1007/s12541-014-0451-5

    Article  Google Scholar 

  8. Ali, A.M.: Specific cutting energy of Inconel 718 under dry, chilled-air and minimal quantity nanolubricants. Procedia CIRP 77, 429–432 (2018). https://doi.org/10.1016/j.procir.2018.08.290

    Article  Google Scholar 

  9. Grguraš, D., Kern, M., Pušavec, F.: Suitability of the full body ceramic end milling tools for high speed machining of nickel based alloy Inconel 718. Procedia CIRP 77, 630–633 (2018). https://doi.org/10.1016/j.procir.2018.08.190

    Article  Google Scholar 

  10. Virdi, R., Chatha, S., Singh, H.: Performance Evaluation of Inconel 718 under vegetable oils based nanofluids using Minimum Quantity Lubrication Grinding. Mater. Today Proc. 33, 1538–1545 (2020). https://doi.org/10.1016/j.matpr.2020.03.802

    Article  Google Scholar 

  11. Venkatesan, K., Mathew, A.T., Devendiran, S., Ghazaly, N.M., Sanjith, S., Raghul, R.: Machinability study and multi-response optimization of cutting force, Surface roughness and tool wear on CNC turned Inconel 617 superalloy using Al2O3 Nanofluids in Coconut oil. Procedia Manuf. 30, 396–403 (2019). https://doi.org/10.1016/j.promfg.2019.02.055

    Article  Google Scholar 

  12. BMBF. Rahmenkonzept. Forschung für die Produktion von morgen

    Google Scholar 

  13. Minh, D., The, L., Bao, N.: Performance of Al2O3 nanofluids in minimum quantity lubrication in hard milling of 60Si2 Mn steel using cemented carbide tools. Adv. Mech. Eng. 9(7), 168781401771061 (2017). https://doi.org/10.1177/1687814017710618

    Article  Google Scholar 

  14. Do Duc, T., Nguyen Ba, N., Van Nguyen, C., Nguyen Nhu, T., Hoang Tien, D.: Surface roughness prediction in CNC hole turning of 3X13 steel using support vector machine algorithm. Tribol. Ind. 42(4), 597–607 (2020). https://doi.org/10.24874/ti.940.08.20.11

    Article  Google Scholar 

  15. Zhang, P., Qian, Y., Qian, Q.: Multi-objective optimization for materials design with improved NSGA-II. Mater. Today Commun. 28, 102709 (2021). https://doi.org/10.1016/j.mtcomm.2021.102709

    Article  Google Scholar 

  16. Jaliliantabar, F., Ghobadian, B., Najafi, G., Mamat, R., Carlucci, A.: Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation. Energy 187, 115970 (2019). https://doi.org/10.1016/j.energy.2019.115970

    Article  Google Scholar 

  17. Song, Y., Zou, M., Chen, X., Deng, J., Du, T.: Parameter optimization of passive heat supply tower of ground source heat pump based on NSGA-II. Sol. Energy 190, 453–464 (2019). https://doi.org/10.1016/j.solener.2019.08.043

    Article  Google Scholar 

Download references

Acknowledgements

The experimental study work is funded by the Ministry of Education & Training (MoET) under grant number B2021-BKA-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy-Duong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VC., Hoang Tien, D., Pham, VH., Nguyen, TD. (2022). Investigation and Optimization of Surface Roughness and Material Removal Rate in Face Finishing Milling of Ti-6Al-4V Under MQL Condition. In: Le, AT., Pham, VS., Le, MQ., Pham, HL. (eds) The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering. RCTEMME 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1968-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1968-8_68

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1967-1

  • Online ISBN: 978-981-19-1968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics