Skip to main content

Hybrid Beamforming for Secured mmWave MIMO Communication

  • Chapter
  • First Online:
Security and Privacy in Cyberspace

Part of the book series: Blockchain Technologies ((BT))

  • 347 Accesses

Abstract

In a non-directional downlink wireless communication system, an eavesdropper can intercept the information easily. To prevent interception up to some extent, high-direction beamforming (HDB) can be used. HDB enhances the physical layer security by steering the signal towards the desired user only. A system such as millimeter-wave (mmWave) communication can provide HDB with a high data rate. Though the amalgamation of a high-dimensional multi-input multi-output (MIMO) and mmWave frequencies can provide directional beamforming in the wireless networks, the implementation of high dimensional MIMO is difficult due to some hardware constraints. Nevertheless, high-dimensional MIMO is implemented using two types of architectures—digital and analog. Digital architecture requires a dedicated radio frequency (RF) chain for each antenna element; hence this architecture dissipates a huge power. On the other hand, analog architecture requires one RF chain connected to each antenna element, but this architecture is capable of transmitting data in one stream. To overcome these disadvantages, hybrid architecture is introduced in the literature. Using hybrid architecture, multiple data streams can be transmitted using a lesser number of RF chains than the number of antenna elements. In hybrid architecture, analog architecture is deployed in the RF domain to provide directionality towards the desired user, while digital architecture is deployed in the baseband domain to nullify the multi-user interference (MUI) at the user’s side. In this chapter, we will present a study on hybrid architecture and its functionalities in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdoğan O, Özbek B, Busari SA, Gonzalez J (2020) Hybrid beamforming for secure multiuser mmWave MIMO communications, pp 1–6

    Google Scholar 

  2. Xiao M, Mumtaz S, Huang Y, Dai L, Li Y, Matthaiou M, Karagiannidis GK, Björnson E, Yang K, Ghosh A (2017) Millimeter wave communications for future mobile networks. IEEE J Sel Areas Commun 35(9):1909–1935

    Google Scholar 

  3. Pi Z, Khan F (2011) An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag 49(6):101–107

    Article  Google Scholar 

  4. Busari SA, Huq KMS, Mumtaz S, Dai L, Rodriguez J (2018) Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Commun Surv Tutor 20(2):836–869

    Google Scholar 

  5. Sun S, Rappaport TS, Heath RW, Nix A, Rangan S (2014) MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag 52(12):110–121

    Article  Google Scholar 

  6. Kim Y, Lee H, Hwang P, Patro RK, Lee J, Roh W, Cheun K (2016) Feasibility of mobile cellular communications at millimeter wave frequency. IEEE J Sel Top Signal Process 10(3):589–599

    Article  ADS  Google Scholar 

  7. Heath RW, González-Prelcic N, Rangan S, Roh W, Sayeed AM (2016) An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process 10(3):436–453

    Article  ADS  Google Scholar 

  8. Tse David, Viswanath Pramod (2005) Fundamentals of wireless communication. Cambridge University Press, New York, NY, USA

    Book  Google Scholar 

  9. Chen X, Lu J, Fan P, Letaief KB (2017) Massive MIMO beamforming with transmit diversity for high mobility wireless communications. IEEE Access 5:23032–23045

    Article  Google Scholar 

  10. Venkateswaran V, van der Veen A (2010) Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans Signal Process 58(8):4131–4143

    Article  ADS  MathSciNet  Google Scholar 

  11. Li X, Zhu Y, Xia P (2017) Enhanced analog beamforming for single carrier millimeter wave MIMO systems. IEEE Trans Wirel Commun 16(7):4261–4274

    Article  Google Scholar 

  12. Xiao Z, He T, Xia P, Xia X (2016) Hierarchical codebook design for beamforming training in millimeter-wave communication. IEEE Trans Wirel Commun 15(5):3380–3392

    Article  Google Scholar 

  13. Sun Y, Qi C (2017) Analog beamforming and combining based on codebook in millimeter wave massive MIMO communications. In: GLOBECOM 2017—2017 IEEE global communications conference, pp 1–6

    Google Scholar 

  14. Steyskal H (1988) Digital beamforming-an emerging technology. In: MILCOM 88, 21st century military communications—what’s possible?’. Conference record. Military communications conference, vol 2, pp 399–403

    Google Scholar 

  15. Ramaswamy Karthikeyan B, Mazumdar D, Kadambi GR (2011) Improved receiver architecture for digital beamforming systems. In: 2011 International conference on computer, communication and electrical technology (ICCCET), pp 208–214

    Google Scholar 

  16. Yang B, Yu Z, Lan J, Zhang R, Zhou J, Hong W (2018) Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech 66(7):3403–3418

    Article  ADS  Google Scholar 

  17. Alkhateeb A, Mo J, Gonzalez-Prelcic N, Heath RW (2014) MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun Mag 52(12):122–131

    Article  Google Scholar 

  18. Ayach OE, Heath RW, Abu-Surra S, Rajagopal S, Pi Z (2012) Low complexity precoding for large millimeter wave MIMO systems. In: 2012 IEEE International conference on communications (ICC), pp 3724–3729

    Google Scholar 

  19. Ayach OE, Rajagopal S, Abu-Surra S, Pi Z, Heath RW (2014) Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun 13(3):1499–1513

    Article  Google Scholar 

  20. Alkhateeb A, El Ayach O, Leus G, Heath RW (2013) Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: 2013 Information theory and applications workshop (ITA), pp 1–5

    Google Scholar 

  21. Alkhateeband A, El Ayach O, Leus G, Heath RW (2014) Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process 8(5):831–846

    Google Scholar 

  22. Xiao Z, Xia P, Xia XG (2016) Low complexity hybrid precoding and channel estimation based on hierarchical multi-beam search for millimeter-wave MIMO systems. CoRR abs/1603.01634

    Google Scholar 

  23. Park S, Alkhateeb A, Heath RW (2017) Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems. IEEE Trans Wirel Commun 16(5):2907–2920

    Article  Google Scholar 

  24. Sohrabi F, Yu W (2017) Hybrid analog and digital beamforming for mmWave ofdm large-scale antenna arrays. IEEE J Sel Areas Commun 35(7):1432–1443

    Article  Google Scholar 

  25. Zhang R, Zou W, Cui M (2018) Low complexity hybrid precoder and combiner design for mmWave MIMO systems. In: 2018 IEEE/CIC International conference on communications in China (ICCC), pp 1–5

    Google Scholar 

  26. Zhang D, Wang Y, Li X, Xiang W (2018) Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems. IEEE Trans Commun 66(2):662–674

    Article  Google Scholar 

  27. Gao X, Dai L, Han S, Heath RW (2016) Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun 34(4):998–1009

    Google Scholar 

  28. Majidzadeh M, Moilanen A, Tervo N, Pennanen H, Tolli A, Latva-aho M (2017) Partially connected hybrid beamforming for large antenna arrays in multi-user miso systems. In: 2017 IEEE 28th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 1–6

    Google Scholar 

  29. Kim T, Park J, Seol JY, Jeong S, Cho J, Roh W (2013) Tens of gbps support with mmWave beamforming systems for next generation communications, pp 3685–3690

    Google Scholar 

  30. Bogale TE, Le LB (2014) Beamforming for multiuser massive MIMO systems: digital versus hybrid analog-digital. In: 2014 IEEE Global communications conference, pp 4066–4071

    Google Scholar 

  31. Fujio S, Koike C, Kimura D (2015) Energy-efficient hybrid beamforming in millimeter-wave communications using FDMA. In: 2015 IEEE 26th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 787–791

    Google Scholar 

  32. Alkhateeb A, Leus G, Heath RW (2015) Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun 14(11):6481–6494

    Article  Google Scholar 

  33. Raghavan V, Subramanian S, Cezanne J, Sampath A, Koymen OH, Li J (2017) Single-user versus multi-user precoding for millimeter wave MIMO systems. IEEE J Sel Areas Commun 35(6):1387–1401

    Article  Google Scholar 

  34. Li Z, Han S, Molisch AF (2017) Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink. IEEE Trans Wirel Commun 16(7):4288–4303

    Article  Google Scholar 

  35. Sohrabi F, Yu W (2016) Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process 10(3):501–513

    Article  ADS  Google Scholar 

  36. Raviteja P, Hong Y, Viterbo E (2018) Millimeter wave analog beamforming with low resolution phase shifters for multiuser uplink. IEEE Trans Veh Technol 67(4):3205–3215

    Article  Google Scholar 

  37. Li Z, Han S, Sangodoyin S, Wang R, Molisch AF (2018) Joint optimization of hybrid beamforming for multi-user massive MIMO downlink. IEEE Trans Wirel Commun 17(6):3600–3614

    Article  Google Scholar 

  38. Wu X, Liu D, Yin F (2018) Hybrid beamforming for multi-user massive MIMO systems. IEEE Trans Commun 66(9):3879–3891

    Article  Google Scholar 

  39. Ratnam VV, Molisch AF, Bursalioglu OY, Papadopoulos HC (2018) Hybrid beamforming with selection for multiuser massive MIMO systems. IEEE Trans Signal Process 66(15):4105–4120

    Article  ADS  MathSciNet  Google Scholar 

  40. Hefnawi M, Yahya E (2018) Capacity-aware hybrid beamforming for multi-user massive MIMO. In: 2018 6th International conference on multimedia computing and systems (ICMCS), pp 1–3

    Google Scholar 

  41. Blandino S, Mangraviti G, Desset C, Bourdoux A, Wambacq P, Pollin S (2019) Multi-user hybrid MIMO at 60 GHz using 16-antenna transmitters. IEEE Trans Circuits Syst I: Regul Papers 66(2):848–858

    Article  Google Scholar 

  42. Han S, Rowell C, Xu Z, Pan Z (2014) Large scale antenna system with hybrid digital and analog beamforming structure. In: 2014 IEEE International conference on communications workshops (ICC), pp 842–847

    Google Scholar 

  43. Li J, Xiao L, Xu X, Zhou S (2016) Robust and low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems. IEEE Commun Lett 20(6):1140–1143

    Article  Google Scholar 

  44. Dai L, Gao X, Han S, Chih-Lin I, Wang X (2016) Beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array. In: 2016 IEEE/CIC International conference on communications in China (ICCC), pp 1–6

    Google Scholar 

  45. Wang P, Pajovic M, Orlik PV, Koike-Akino T, Kim KJ, Fang J (2017) Sparse channel estimation in millimeter wave communications: exploiting joint AoD-AoA angular spread. In: 2017 IEEE International conference on communications (ICC), pp 1–6

    Google Scholar 

  46. Tsai C, Chen C, Liu Y, Wu AA (2016) Joint spatially sparse channel estimation for millimeter-wave cellular systems. In: 2016 IEEE Global conference on signal and information processing (GlobalSIP), pp 605–609

    Google Scholar 

  47. Sun S, Rappaport TS (2017) Millimeter wave MIMO channel estimation based on adaptive compressed sensing. CoRR abs/1703.08227

    Google Scholar 

  48. Li X, Fang J, Li H, Wang P (2017) Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. CoRR abs/1705.02455

    Google Scholar 

  49. Bajwa WU, Sayeed A, Nowak R (2009) Sparse multipath channels: modeling and estimation, pps 320–325

    Google Scholar 

  50. Al-Samman AM, Rahman TA, Azmi MH, Hindia MN, Khan I, Hanafi E (2016) Statistical modelling and characterization of experimental mm-wave indoor channels for future 5G wireless communication networks. PLOS ONE 11(9):1–29

    Google Scholar 

  51. Zhang G, Saito K, Fan W, Cai X, Hanpinitsak P, Takada J, Pedersen GF (2018) Experimental characterization of millimeter-wave indoor propagation channels at 28 GHz. IEEE Access 6:76516–76526

    Article  Google Scholar 

  52. Sayeed A, Brady J (2013) Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies. In: 2013 IEEE global communications conference (GLOBECOM), pp 3679–3684

    Google Scholar 

  53. Amadori PV, Masouros C (2015) Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Trans Commun 63(6):2212–2223

    Article  Google Scholar 

  54. Gao X, Dai L, Chen Z, Wang Z, Zhang Z (2016) Near-optimal beam selection for beamspace mmWave massive MIMO systems. IEEE Commun Lett 20(5):1054–1057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourav Modanwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, R., Modanwal, G., Chatterjee, S., Sarawadekar, K.P. (2022). Hybrid Beamforming for Secured mmWave MIMO Communication. In: Kaiwartya, O., Kaushik, K., Gupta, S.K., Mishra, A., Kumar, M. (eds) Security and Privacy in Cyberspace. Blockchain Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1960-2_11

Download citation

Publish with us

Policies and ethics