Skip to main content

Dispersion of Rayleigh Wave in a Shielded Anisotropic Generalized Thermoelastic Layer

  • Conference paper
  • First Online:
Recent Advances in Applied Mathematics and Applications to the Dynamics of Fluid Flows

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 173 Accesses

Abstract

A study of Rayleigh wave propagation has been conducted in thermally conducting homogeneous anisotropic layer. The theories of generalized thermo-elasticity which are taken into account are classical dynamical coupled theory (CD theory), Lord and Shulman’s theory (LS theory) and Green and Lindsay’ theory (GL theory) with two thermal relaxation times. An analytical solution obtained and procured a dispersion relation subjected to boundaries as rigid and insulated. In order to deal with the numerical results of the problem, a tri-clinic material has been taken into account. The results are interpreted in terms of graphs. The graphs show significant impacts on the phase velocity of Rayleigh wave with wave number for different thicknesses of layer under all theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc s1-17(1):4–11

    Google Scholar 

  2. Wilson JT (1942) Surface waves in a heterogeneous medium. Bull Seismol Soc Am 32:297–305

    Google Scholar 

  3. Newlands M (1950) Rayleigh waves in a two layer heterogeneous medium. Mon Notices R Astron Soc Geophys Suppl 6:S2109

    Google Scholar 

  4. Stonely R (1934) The transmission of Rayleigh waves in a heterogeneous medium. Mon Notices R Astron Soc Geophys Suppl 3:S222

    Google Scholar 

  5. Gupta S, Chattopadhayay A, Vishwakarma SK, Majhi DK (2011) Influence of rigid boundary and initial stress on the propagation of Love wave. Appl Math 2:586–594

    Google Scholar 

  6. Vishwakarma SK, Gupta S, Majhi DK (2013) Influence of rigid boundary on the Love wave propagation in elastic layer with void pores. Acta Mechanica Solida Sinica 26(5):551–558

    Google Scholar 

  7. Lord HW, Shulman YA (1967) Generalized dynamical theory of thermo-elasticity. J Mech Phys Solids 15:299–309

    Google Scholar 

  8. Fox N (1969) Generalised thermoelasticity. Int J Eng Sci 7:437–445

    Google Scholar 

  9. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Google Scholar 

  10. Ivanov TP (1988) On the propagation of thermoelastic Rayleigh waves. Wave Motion 10:73–82

    Google Scholar 

  11. Sharma JN (2004) Pal M: Rayleigh-Lamb waves in magneto-thermoelastic homogeneous isotropic plate. Int J Eng Sci 42:137–155

    Google Scholar 

  12. Kumar S, Pal PC (2014) Wave propagation in an inhomogeneous anisotropic generalized thermoelastic solid under the effect of gravity. Comput Therm Sci 6:241–250

    Google Scholar 

  13. Pal PC, Kumar S, Mandal D (2014) Wave propagation in an inhomogeneous anisotropic generalized thermoelastic solid. J Therm Stress 37:817–831

    Google Scholar 

  14. Biswas S, Mukhopadhyay B, Shaw S (2017) Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J Therm Stress 40:403–419

    Google Scholar 

  15. Yadav D, Kim MC (2016) Theoretical and numerical analyses on the onset and growth of convective instabilities in a horizontal anisotropic porous medium. J Porous Media 17(12):1061–1074

    Google Scholar 

  16. Yadav D (2020) Numerical examination of the thermal instability in an anisotropic porous medium layer subjected to rotation and variable gravity field. Special Top Rev Porous Media Int J 11(4):395–407

    Google Scholar 

  17. Yadav D (2020) The density-driven nanofluid convection in an anisotropic porous medium layer with rotation and variable gravity field: a numerical investigation. J Appl Comput Mech 6(3):699–712

    Google Scholar 

  18. Yadav D (2020) Numerical solution of the onset of Buoyancy?driven nanofluid convective motion in an anisotropic porous medium layer with variable gravity and internal heating. Heat Trans Asian Res 49(3):1170–1191

    Google Scholar 

  19. Yadav D, Mohamad AM, Rana GC (2020) Effect of throughflow on the convective instabilities in an ?anisotropic porous medium layer with inconstant gravity. J Appl Comput Mech (2020). https://doi.org/10.22055/jacm.2020.32381.2006

  20. Rasolofosaon PNJ, Zinszner BE (2002) Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks. Geophysics 67:230–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar .

Editor information

Editors and Affiliations

Appendices

Appendix 1

$$ \begin{array}{lll} a_{11} = s^2 - 2is\xi _1 - \xi _2 \eta _1^2 &{} a_{12} = \xi _3 s^2 - i\xi _4 s - \xi _1 &{} a_{13} = - \xi _6 \left( {\frac{i}{k} + \tau _1 c} \right) \\ a_{21} = \xi _3 s^2 - i\xi _4 s - \xi _1 &{} a_{22} = \xi _5 s^2 - 2i\xi _3 s - \eta _2^2 &{} a_{23} = s\xi _7 \left( {\frac{1}{k} + i\tau _1 c} \right) \\ a_{31} = \xi _8 c\left( {1 - ikc\tau _0 \varOmega } \right) &{} a_{32} = \xi _9 c\left( {i + kc\tau _0 \varOmega } \right) s &{} a_{33} = - s^2 + \xi _{10} - \frac{c}{\nu }\left( {\frac{i}{k} + \tau _0 c} \right) \end{array} $$

Appendix 2

$$ \begin{array}{l} a_0 = \xi _3^2 - \xi _5 ,\,\,a_1 = 2i\xi _3^{} - \xi _3 \xi _4 + 2i\xi _1 \xi _5 \\ a_2 = 2\xi _1 \xi _3^{} + \frac{{ic\xi _3^2 }}{{kv}} - \xi _{10} \xi _3^2 - \frac{{ic\xi _5^{} }}{{kv}} + \xi _{10} \xi _5^{} - \frac{{ic\xi _7^{} \xi _9^{} }}{k} + \xi _2 \xi _5^{} \eta _1^2 + \eta _2^2 + \frac{{c^2 \xi _3^2 \tau _0 }}{v} - \frac{{c^2 \xi _5^{} \tau _0 }}{v} \\ \,\,\,\,\,\,\,\,\,\, - \frac{{c^2 k\omega \xi _7^{} \xi _9^{} \tau _0 }}{k} + c^2 \xi _7^{} \xi _9^{} \tau _1 - ic^3 k\omega \xi _7^{} \xi _9^{} \tau _0 \tau _1 \\ a_3 = - \frac{{2c\xi _3 }}{{kv}} - 2i\xi _{10} \xi _3 + 2i\xi _1 \xi _4 + \frac{{2c\xi _3 \xi _4 }}{{kv}} + 2i\xi _{10} \xi _3 \xi _4 - \frac{{2c\xi _1 \xi _5 }}{{kv}} - 2i\xi _1 \xi _{10} \xi _5 + \frac{{c\xi _3 \xi _7 \xi _8 }}{k} - \frac{{c\xi _3 \xi _6 \xi _9 }}{k} \\ \,\,\,\,\,\,\,\,\,\, - \frac{{2c\xi _1 \xi _7 \xi _9 }}{k} - 2i\xi _2 \xi _3 \eta _1^2 - 2i\xi _1 \eta _2^2 + \frac{{2ic^2 \xi _3 \tau _0 }}{v} - \frac{{2ic^2 \xi _3 \xi _4 \tau _0 }}{v} + \frac{{2ic^2 \xi _1 \xi _5 \tau _0 }}{v} - \frac{{ickc\omega \xi _3 \xi _7 \xi _8 \tau _0 }}{k} \\ \,\,\,\,\,\,\,\,\,\, + \frac{{ickm\omega \xi _3 \xi _6 \xi _9 \tau _0 }}{k} + \frac{{2ickc\omega \xi _1 \xi _7 \xi _9 \tau _0 }}{k} + ic^2 \xi _3 \xi _7 \xi _8 \tau _1 + ic^2 \xi _3 \xi _6 \xi _9 \tau _1 - 2ic^2 \xi _1 \xi _7 \xi _9 \tau _1 \\ \,\,\,\,\,\,\,\,\,\, + c^2 kc\omega \xi _3 \xi _7 \xi _8 \tau _0 \tau _1 + c^2 kc\omega \xi _3 \xi _6 \xi _9 \tau _0 \tau _1 - 2c^2 kc\omega \xi _1 \xi _7 \xi _9 \tau _0 \tau _1 \\ a_4 = \xi _1^2 + \frac{{2ic\xi _1 \xi _3 }}{{kv}} - 2i\xi _1 \xi _{10} \xi _3 - \frac{{ic\xi _4^2 }}{{kv}} + \xi _{10} \xi _4^2 - \frac{{ic\xi _5 \xi _6 \xi _8 }}{k} - \frac{{ic\xi _4 \xi _7 \xi _8 }}{k} + \frac{{ic\xi _4 \xi _6 \xi _9 }}{k} + \frac{{ic\xi _2 \xi _5 \eta _1^2 }}{{kv}} - \xi _{10} \xi _2 \xi _5 \eta _1^2 \\ \,\,\,\,\,\,\,\,\,\,\, + \frac{{ic\xi _2 \xi _7 \xi _9 \eta _1^2 }}{k} - \frac{{ic\eta _2^2 }}{{kv}} - \xi _{10} \eta _2^2 - \xi _2 \eta _1^2 \eta _2^2 + \frac{{2c^2 \xi _1 \xi _3 \tau _0 }}{v} - \frac{{c^2 \xi _4^2 \tau _0 }}{v} - \frac{{ckc\omega \xi _5 \xi _6 \xi _8 \tau _0 }}{k} - \frac{{ckc\omega \xi _4 \xi _7 \xi _8 \tau _0 }}{k} \\ \,\,\,\,\,\,\,\,\,\,\, + \frac{{ckc\omega \xi _4 \xi _6 \xi _9 \tau _0 }}{k} + \frac{{c^2 \xi _2 \xi _5 \eta _1^2 \tau _0 }}{v} + \frac{{ckc\omega \xi _2 \xi _7 \xi _9 \eta _1^2 \tau _0 }}{k} + \frac{{c^2 \eta _2^2 \tau _0 }}{v} - c^2 \xi _5 \xi _6 \xi _8 \tau _1 + c^2 \xi _4 \xi _7 \xi _8 \tau _1 + c^2 \xi _4 \xi _6 \xi _9 \tau _1 \\ \,\,\,\,\,\,\,\,\,\, - c^2 \xi _2 \xi _7 \xi _9 \eta _1^2 \tau _1 + ic^2 kc\omega \xi _5 \xi _6 \xi _8 \tau _0 \tau _1 - ic^2 kc\omega \xi _4 \xi _7 \xi _8 \tau _0 \tau _1 - ic^2 kc\omega \xi _4 \xi _6 \xi _9 \tau _0 \tau _1 + ic^2 kc\omega \xi _2 \xi _7 \xi _9 \eta _1^2 \tau _0 \tau _1 \\ a_5 = - \frac{{2ic\xi _1 \xi _4 }}{{kv}} - 2i\xi _1 \xi _{10} \xi _4 - \frac{{2c\xi _3^{} \xi _6^{} \xi _8^{} }}{k} - \frac{{c\xi _1^{} \xi _7^{} \xi _8^{} }}{k} + \frac{{c\xi _1^{} \xi _6^{} \xi _9^{} }}{k} + \frac{{2c\xi _2^{} \xi _3^{} \eta _1^2 }}{k} + 2i\xi _{10}^{} \xi _2^{} \xi _3^{} \eta _1^2 + \frac{{2c\xi _1^{} \eta _2^2 }}{{kv}} \\ \,\,\,\,\,\,\,\,\,\, + 2i\xi _1^{} \xi _{10}^{} \eta _2^2 + \frac{{2ic^2 \xi _1 \xi _4 \tau _0 }}{v} + \frac{{2ic^2 k\omega \xi _1 \xi _7 \xi _8 \tau _0 }}{k} + \frac{{ic^2 k\omega \xi _1 \xi _7 \xi _8 \tau _0 }}{k} - \frac{{2ic^2 k\omega \xi _1 \xi _7 \xi _8 \tau _0 }}{k} - \frac{{ic^2 k\omega \xi _1 \xi _6 \xi _9 \tau _0 }}{k} \\ \,\,\,\,\,\,\,\,\, - \frac{{2ic^2 k\omega \xi _2 \xi _3 \eta _1^2 \tau _0 }}{k} - \frac{{2ic^2 \xi _1 \eta _2^2 \tau _0 }}{k} + 2ic^2 \xi _3 \xi _6 \xi _8 \tau _1 - ic^2 \xi _1 \xi _7 \xi _8 \tau _1 - ic^2 \xi _1 \xi _6 \xi _9 \tau _1 + 2c^3 k\omega \xi _3 \xi _6 \xi _8 \tau _0 \tau _1 \\ \,\,\,\,\,\,\,\,\, - c^3 k\omega \xi _1 \xi _7 \xi _8 \tau _0 \tau _1 - c^3 k\omega \xi _1 \xi _6 \xi _9 \tau _0 \tau _1 \\ a_6 = \frac{{ic\xi _1^2 }}{{kv}} - \xi _1^2 \xi _{10} + \frac{{ic\xi _6^{} \xi _8^{} \eta _2^2 }}{k} + \xi _{10}^{} \xi _2^{} \eta _1^2 \eta _2^2 + \frac{{c^2 \xi _1^2 \tau _0 }}{v} + \frac{{c^2 k\omega \xi _6^{} \xi _8^{} \eta _2^2 \tau _0 }}{k} - \frac{{c^2 \xi _2^{} \eta _1^2 \eta _2^2 \tau _0 }}{v} + c^2 \xi _6^{} \xi _8^{} \eta _2^2 \tau _1 \\ \,\,\,\,\,\,\,\,\,\, - ic^3 k\omega \xi _6^{} \xi _8^{} \eta _2^2 \tau _1 \tau _0 \end{array} $$

Appendix 3

$$ \begin{array}{l} a_{11,j} = s_j^2 - 2is_j \xi _1 - \xi _2 \eta _1^2 ,\,\,a_{12,j} = \xi _3 s_j^2 - i\xi _4 s_j - \xi _1 ,a_{13,j} = - \xi _6 \left( {\frac{i}{k} + \tau _1 c} \right) ,\,\, \\ a_{21,j} = \xi _3 s_j^2 - i\xi _4 s_j - \xi _1 a_{22,j} = \xi _5 s_j^2 - 2i\xi _3 s_j - \eta _2^2 ,\,\,a_{23,j} = s_j \xi _7 \left( {\frac{1}{k} + i\tau _1 c} \right) ,\left( {j = 1,\ldots ,6} \right) \\ \end{array} $$

Appendix 4

$$ \begin{array}{l} M_{1j} = \mathrm{{exp}}\left[ {\frac{{ks_j h}}{2}} \right] ,\,\,M_{2j} = \delta _j \mathrm{{exp}}\left[ {\frac{{ks_j h}}{2}} \right] ,\,\,\,M_{3j} = \gamma _j s_j \mathrm{{exp}}\left[ {\frac{{ks_j h}}{2}} \right] , \\ M_{4j} = \mathrm{{exp}}\left[ { - \frac{{ks_j h}}{2}} \right] ,\,\,\,M_{5j} = \delta _j \mathrm{{exp}}\left[ { - \frac{{ks_j h}}{2}} \right] ,\,\,\,M_{6j} = \gamma _j s_j \mathrm{{exp}}\left[ { - \frac{{ks_j h}}{2}} \right] ,\,\,\,\left( {j = 1,\ldots ,6} \right) \\ \end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Prakash, D., Sivakumar, N., Kumar, B.R. (2023). Dispersion of Rayleigh Wave in a Shielded Anisotropic Generalized Thermoelastic Layer. In: Srinivas, S., Satyanarayana, B., Prakash, J. (eds) Recent Advances in Applied Mathematics and Applications to the Dynamics of Fluid Flows. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1929-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1929-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1928-2

  • Online ISBN: 978-981-19-1929-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics