Skip to main content

Comparative Analysis of the Influence of the Convective Term in the Quantitative Assessment by Infrared Thermography

  • Chapter
  • First Online:
New Technologies in Building and Construction

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 258))

Abstract

Envelope thermal transmittance strongly influences building energy consumption, so there is a significant interest in using methods that assess it accurately. The quantitative infrared thermography method is among the most studied methods to assess thermal transmittance as this method could be used to analyse building envelopes qualitatively and quantitatively. However, its main limitation is the great variety of approaches. Their greater differences are the convective heat transfer coefficient and the place from which the measurement is carried out. This chapter comparatively analyses the experimental results obtained in previous studies. The analysis showed that the approaches from the interior using expressions of adimensional numbers allow accurate characterizations of thermal transmittance to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To simplify the reading of Table 4, the variable \({\Delta T}_{\mathrm{si}}\) was used. This variable refers to the difference between the internal surface temperature and the internal temperature.

References

  1. Kurtz F, Monzón M, López-Mesa B (2015) Energy and acoustics related obsolescence of social housing of Spain’s post-war in less favoured urban areas. The case of Zaragoza. Inf. La Construcción. 67:m021. https://doi.org/10.3989/ic.14.062

  2. Adhikari R, Lucchi E, Pracchi V (2012) Experimental measurements on thermal transmittance of the opaque vertical walls in the historical buildings. In: PLEA2012—28th conference, opportunities, limits and needs towards an environmentally responsible architecture

    Google Scholar 

  3. Waddicor DA, Fuentes E, Sisó L, Salom J, Favre B, Jiménez C, Azar M (2016) Climate change and building ageing impact on building energy performance and mitigation measures application: a case study in Turin, northern Italy. Build Environ 102:13–25. https://doi.org/10.1016/j.buildenv.2016.03.003

    Article  Google Scholar 

  4. Walker R, Pavía S (2015) Thermal performance of a selection of insulation materials suitable for historic buildings. Build Environ 94:155–165. https://doi.org/10.1016/j.buildenv.2015.07.033

    Article  Google Scholar 

  5. Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring—a review. Infrared Phys Technol 60:35–55. https://doi.org/10.1016/j.infrared.2013.03.006

    Article  Google Scholar 

  6. Balaras CA, Argiriou AA (2002) Infrared thermography for building diagnostics. Energ Build 34:171–183. https://doi.org/10.1016/S0378-7788(01)00105-0

    Article  Google Scholar 

  7. Kylili A, Fokaides PA, Christou P, Kalogirou SA (2014) Infrared thermography (IRT) applications for building diagnostics: a review. Appl Energ 134:531–549. https://doi.org/10.1016/j.apenergy.2014.08.005

    Article  Google Scholar 

  8. Lucchi E (2018) Applications of the infrared thermography in the energy audit of buildings: a review. Renew Sustain Energ Rev 82:3077–3090. https://doi.org/10.1016/j.rser.2017.10.031

    Article  Google Scholar 

  9. Albatici R, Tonelli AM (2010) Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site. Energ Build 42:2177–2183. https://doi.org/10.1016/j.enbuild.2010.07.010

    Article  Google Scholar 

  10. Madding R (2008) Finding R-values of stud-frame constructed houses with IR thermography. In: Proceedings of InfraMation

    Google Scholar 

  11. Fokaides PA, Kalogirou SA (2011) Application of infrared thermography for the determination of the overall heat transfer coefficient (U-value) in building envelopes. Appl Energ 88:4358–4365. https://doi.org/10.1016/j.apenergy.2011.05.014

    Article  Google Scholar 

  12. Holman JP (1986) Heat transfer, 6th edn. McGraw-Hill Inc, New York

    Google Scholar 

  13. Earle RL, Earle MD (1983) Unit operations in food processing

    Google Scholar 

  14. Albatici R, Tonelli AM (2008) On site evaluation of U-value of opaque building elements: a new methodology. In: PLEA 2008—25th conference of passive and low energy architecture

    Google Scholar 

  15. Albatici R, Tonelli AM, Chiogna M (2015) A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Appl Energ 141:218–228. https://doi.org/10.1016/j.apenergy.2014.12.035

    Article  Google Scholar 

  16. Watanabe K (1965) Architectural planning fundamentals

    Google Scholar 

  17. Dall’O’ G, Sarto L, Panza A (2013) Infrared screening of residential buildings for energy audit purposes: results of a field test. Energies 6:3859–3878. https://doi.org/10.3390/en6083859

  18. Tejedor B, Casals M, Gangolells M, Roca X (2017) Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energ Build 151:187–197. https://doi.org/10.1016/j.enbuild.2017.06.040

    Article  Google Scholar 

  19. Bienvenido-Huertas D, Bermúdez J, Moyano JJ, Marín D (2019) Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Build Environ 149:512–525. https://doi.org/10.1016/j.buildenv.2018.12.056

    Article  Google Scholar 

  20. Bienvenido-Huertas D, Bermúdez J, Moyano J, Marín D (2019) Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls. Energ Build 184:99–113. https://doi.org/10.1016/j.enbuild.2018.11.028

    Article  Google Scholar 

  21. Meng X, Yan B, Gao Y, Wang J, Zhang W, Long E (2015) Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energ Build 86:754–765. https://doi.org/10.1016/j.enbuild.2014.11.005

    Article  Google Scholar 

  22. Nardi I, Paoletti D, Ambrosini D, De Rubeis T, Sfarra S (2016) U-value assessment by infrared thermography: a comparison of different calculation methods in a Guarded Hot Box. Energ Build 122:211–221. https://doi.org/10.1016/j.enbuild.2016.04.017

    Article  Google Scholar 

  23. ASTM International (2014) ASTM E1933-14, Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers, West Conshohocken, PA. https://doi.org/10.1520/E1933-14

  24. Maroy K, Carbonez K, Steeman M, Van Den Bossche N (2017) Assessing the thermal performance of insulating glass units with infrared thermography: potential and limitations. Energ Build 138:175–192. https://doi.org/10.1016/j.enbuild.2016.10.054

    Article  Google Scholar 

  25. Hagishima A, Tanimoto J, Narita K (2005) Intercomparisons of experimental convective heat transfer coefficients and mass transfer coefficients of urban surfaces. Boundary-Layer Meteorol 117:551–576. https://doi.org/10.1007/s10546-005-2078-7

    Article  Google Scholar 

  26. Cole RJ, Sturrock NS (1977) The convective heat exchange at the external surface of buildings. Build Environ 12:207–214. https://doi.org/10.1016/0360-1323(77)90021-X

    Article  Google Scholar 

  27. Watmuff JH, Charters WWS, Proctor D (1977) Solar and wind induced external coefficients—solar collectors. Coop. Mediterr. Pour l’Energie Solaire, Rev. Int. d’Heliotechnique. 56

    Google Scholar 

  28. Palyvos JA (2008) A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl Therm Eng 28:801–808. https://doi.org/10.1016/j.applthermaleng.2007.12.005

    Article  Google Scholar 

  29. Defraeye T, Blocken B, Carmeliet J (2011) Convective heat transfer coefficients for exterior building surfaces: existing correlations and CFD modelling. Energ Convers Manag 52:512–522. https://doi.org/10.1016/j.enconman.2010.07.026

    Article  Google Scholar 

  30. Nusselt W, Jürges W (1922) Die Kuhlung einer ebenen Wand durch einen Luftstrom. Gesundheits Ing. 52:641–642

    Google Scholar 

  31. Jürges W (1924) Der Wärmeübergang an einer ebenen Wand (heat transfer at a plane wall). Gesundh. Ing., Beiheft

    Google Scholar 

  32. McAdams WH (1954) Heat transmission. McGraw-Hill, New York

    Google Scholar 

  33. Davies MG (2004) Building heat transfer. Wiley

    Google Scholar 

  34. Sogin HH (1964) A summary of experiments on local heat transfer from the rear of bluff obstacles to a low speed airstream. J Heat Transfer 86:200–202. https://doi.org/10.1115/1.3687094

    Article  Google Scholar 

  35. Schaak A (1965) Industrial heat transfer. Chapman & Hall, London

    Google Scholar 

  36. Jennings BH (1970) Environmental engineering; analysis and practice. International Textbook Co

    Google Scholar 

  37. Sturrock NS (1971) Localized boundary-layer heat transfer from external building surfaces. University of Liverpool

    Google Scholar 

  38. Mitchell JW (1971) Base heat transfer in two-dimensional subsonic fully separated flows. J Heat Transfer 93:342–348. https://doi.org/10.1115/1.3449829

    Article  Google Scholar 

  39. Lokmanhekim M (1971) Procedure for determining heating and cooling loads for computerized energy calculations. Algorithms for building heat transfer subroutines. ASHRAE, New York

    Google Scholar 

  40. Ito N (1972) Field experiment study on the convective heat transfer coefficient on exterior surface of a building. ASHRAE Trans 78:184–191

    Google Scholar 

  41. Kimura K (1977) Scientific basis of air conditioning. Applied Science Publishers, London

    Google Scholar 

  42. Nicol K (1977) The energy balance of an exterior window surface, Inuvik, N.W.T., Canada. Build Environ 12:215–219. https://doi.org/10.1016/0360-1323(77)90022-1

  43. Lunde PJ (1980) Solar thermal engineering: space heating and hot water systems. Wiley

    Google Scholar 

  44. Test FL, Lessmann RC, Johary A (1981) Heat transfer during wind flow over rectangular bodies in the natural environment. J Heat Transfer 103:262–267. https://doi.org/10.1115/1.3244451

    Article  Google Scholar 

  45. Sharples S (1984) Full-scale measurements of convective energy losses from exterior building surfaces. Build Environ 19:31–39. https://doi.org/10.1016/0360-1323(84)90011-8

    Article  Google Scholar 

  46. Yazdanian M, Klems J (1993) Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Trans 100:1–19

    Google Scholar 

  47. Jayamaha SEG, Wijeysundera NE, Chou SK (1996) Measurement of the heat transfer coefficient for walls. Build Environ 31:399–407. https://doi.org/10.1016/0360-1323(96)00014-5

    Article  Google Scholar 

  48. Loveday DL, Taki AH (1996) Convective heat transfer coefficients at a plane surface on a full-scale building facade. Int J Heat Mass Transf 39:1729–1742. https://doi.org/10.1016/0017-9310(95)00268-5

    Article  Google Scholar 

  49. Taki AH, Loveday DL (1996) External convection coefficients for framed rectangular elements on building facades. Energ Build 24:147–154. https://doi.org/10.1016/0378-7788(96)00972-3

    Article  Google Scholar 

  50. Hagishima A, Tanimoto J (2003) Field measurements for estimating the convective heat transfer coefficient at building surfaces. Build Environ 38:873–881. https://doi.org/10.1016/S0360-1323(03)00033-7

    Article  Google Scholar 

  51. Mirsadeghi M, Cóstola D, Blocken B, Hensen JLM (2013) Review of external convective heat transfer coefficient models in building energy simulation programs: implementation and uncertainty. Appl Therm Eng 56:134–151. https://doi.org/10.1016/j.applthermaleng.2013.03.003

    Article  Google Scholar 

  52. CIBSE (2015) CIBSE guide a: environmental design. https://doi.org/10.1016/0360-1323(94)00059-2

  53. Liu Y, Harris DJ (2015) Measurements of wind speed and convective coefficient on the external surface of a low-rise building. Int J Ambient Energ 36:225–234. https://doi.org/10.1080/01430750.2013.853204

    Article  Google Scholar 

  54. Xie J, Cui Y, Liu J, Wang J, Zhang H (2018) Study on convective heat transfer coefficient on vertical external surface of island-reef building based on naphthalene sublimation method. Energ Build 158:300–309. https://doi.org/10.1016/j.enbuild.2017.09.092

    Article  Google Scholar 

  55. Khalifa A-JN (2001) Natural convective heat transfer coefficient—a review I. Isolated vertical and horizontal surfaces. Energ Convers Manag 42:491–504. https://doi.org/10.1016/S0196-8904(00)00042-X

  56. Khalifa A-JN (2001) Natural convective heat transfer coefficient—a review II. Surfaces in two- and three-dimensional enclosures. Energ Convers Manag 42:505–517. https://doi.org/10.1016/S0196-8904(00)00043-1

  57. Peeters L, Beausoleil-Morrison I, Novoselac A (2011) Internal convective heat transfer modeling: critical review and discussion of experimentally derived correlations. Energ Build 43:2227–2239. https://doi.org/10.1016/j.enbuild.2011.05.002

    Article  Google Scholar 

  58. Obyn S, Van Moeseke G (2015) Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Appl Therm Eng 87:258–272. https://doi.org/10.1016/j.applthermaleng.2015.05.030

    Article  Google Scholar 

  59. Wilkes GB, Peterson CMF (1938) Radiation and convection from surfaces in various positions. Trans ASHVE 44:513–520

    Google Scholar 

  60. Giesecke FE (1940) Radiant heating and cooling. ASHVE J Heat Pip Air Cond 12:484–485

    Google Scholar 

  61. Min TC, Schutrum LF, Parmelee GV, Vouris JD (1956) Natural convection and radiation in a panel heated room. Ashrae Trans 62:337–358

    Google Scholar 

  62. Churchill SW, Chu HHS (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf 18:1049–1053

    Article  Google Scholar 

  63. Engineering science data unit, Heat transfer by free convection and radiation—simply shaped bodies in air and other fluids, London, 1979

    Google Scholar 

  64. Alamdari F, Hammond GP (1983) Improved data correlations for buoyancy-driven convection in rooms. Build Serv Eng Res Technol 4:106–112. https://doi.org/10.1177/014362448300400304

    Article  Google Scholar 

  65. Li LD, Beckman WA, Mitchell JW (1983) An experimental study of natural convection in an office room, large time results. Solar Energy Laboratory, University of Wisconsin, Madison

    Google Scholar 

  66. Khalifa AJN, Marshall RH (1990) Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. Int J Heat Mass Transf 33:2219–2236. https://doi.org/10.1016/0017-9310(90)90122-B

    Article  Google Scholar 

  67. Hatton A, Awbi HB (1995) Convective heat transfer in rooms. In: Proceedings of fourth international conference, building simulation ’95

    Google Scholar 

  68. Awbi HB, Hatton A (1999) Natural convection from heated room surfaces. Energ Build 30:233–244. https://doi.org/10.1016/S0098-8472(99)00063-5

    Article  Google Scholar 

  69. Fohanno S, Polidori G (2006) Modelling of natural convective heat transfer at an internal surface. Energ Build 38:548–553. https://doi.org/10.1016/j.enbuild.2005.09.003

    Article  Google Scholar 

  70. Jakob M (1949) Heat transfer. Willey & Sons, New York

    Google Scholar 

  71. Fishenden M, Saunders OA (1950) Introduction to heat transfer. Oxford University Press, Oxford

    Google Scholar 

  72. Chartered Institution of Building Services Engineers, CIBSE Guide C3, Heat Transfer, London, 1976

    Google Scholar 

  73. Wong HY (1977) Heat transfer for engineers. Pearson Longman, Harlow

    Google Scholar 

  74. Welty JR (1978) Engineering heat transfer. Wiley, New York

    Google Scholar 

  75. Al-Arabi M, Sakr B (1988) Natural convection heat transfer from inclined isothermal plates. Int J Heat Mass Transf 31:559–566. https://doi.org/10.1016/0017-9310(88)90037-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bienvenido-Huertas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bienvenido-Huertas, D., Tejedor, B., Marín-García, D., Durán, J. (2022). Comparative Analysis of the Influence of the Convective Term in the Quantitative Assessment by Infrared Thermography. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics