Skip to main content

Methodology for the Evaluation of an Energetic Model of Thermal Transmittance in a Window by Means of Horizontal Aggregation (HA) from Short-range Photogrammetry for Model Digital Twin

  • Chapter
  • First Online:
New Technologies in Building and Construction

Abstract

One of the great challenges in the architecture, engineering, and construction (AEC) industry is data communication and its development in modelling techniques. The development of 5G techniques, with the Internet of things (IoT), artificial intelligence (AI), amongst others, is developing significant advances for staging of data integration in the so-called digital twins (DTs). Undoubtedly, the DTs intend to synchronize the real physical data with a digital world that experiences successive changes that occur throughout the life cycle of the system. In this context, this work experiments with a horizontal integration methodology to evaluate the U-value of a window frame from structure from motion (SfM) photogrammetry data, as part of a digital twin. The “in situ” evaluation of the thermal transmittance of a common aluminium window frame that is being used in existing buildings in the 1960s and that reached constructions of the 1980s is addressed. The experimental results apply simulation analysis using two-dimensional software. Thermal transmittance measurement equipment was used through a thermal flow meter plate, and the variations in thermal behaviour were analyzed according to the geometry of the frame. The results show different Uf-value data between the simulation and the in situ measurement with a dispersion variability of 1.5 W/m2K between the models. The essence and originality of the experimentation lie in the integration of horizontal aggregates (HA) as a basis in the simulation, measurement, and reverse engineering processes to an energy model of the DT system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CMNUCC, Acuerdo de París, COP21. 21930 (2015) 40. http://unfccc.int/resource/docs/2015/cop21/spa/l09s.pdf

  2. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energ Build 40:394–398. https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  3. Bienvenido-Huertas D, Rubio-Bellido C, Pérez-Fargallo A, Pulido-Arcas JA (2020) Energy saving potential in current and future world built environments based on the adaptive comfort approach. J Clean Prod 249. https://doi.org/10.1016/j.jclepro.2019.119306

  4. Sánchez-García D, Bienvenido-Huertas D, Pulido-Arcas JA, Rubio-Bellido C (2020) Analysis of energy consumption in different European cities: the adaptive comfort control implemented model (ACCIM) considering representative concentration pathways (RCP) scenarios. Appl Sci 10:1–24. https://doi.org/10.3390/app10041513

    Article  Google Scholar 

  5. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C (2020) Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Appl Energ 279. https://doi.org/10.1016/j.apenergy.2020.115845

  6. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C (2021) Adaptive setpoint temperatures to reduce the risk of energy poverty? A local case study in Seville. Energ Build 110571. https://doi.org/10.1016/j.enbuild.2020.110571

  7. Pérez-Fargallo A, Bienvenido-Huertas D, Rubio-Bellido C, Trebilcock M (2020) Energy poverty risk mapping methodology considering the user’s thermal adaptability: the case of Chile, Energy. Sustain Dev 58:63–77. https://doi.org/10.1016/j.esd.2020.07.009

    Article  Google Scholar 

  8. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C, Pulido-Arcas JA (2020) Analysing the inequitable energy framework for the implementation of nearly zero energy buildings (nZEB) in Spain. J Build Eng. https://doi.org/10.1016/j.jobe.2020.102011

    Article  Google Scholar 

  9. Bienvenido-Huertas D, Marín-García D, Carretero-Ayuso MJ, Rodríguez-Jiménez CE (2021) Climate classification for new and restored buildings in Andalusia: analysing the current regulation and a new approach based on k-means. J Build Eng 43:102829. https://doi.org/10.1016/j.jobe.2021.102829

    Article  Google Scholar 

  10. Bienvenido-Huertas D, Oliveira M, Rubio-Bellido C, Marín D (2019) A comparative analysis of the international regulation of thermal properties in building envelope. Sustainability 11:5574. https://doi.org/10.3390/su11205574

    Article  Google Scholar 

  11. Bienvenido-Huertas D (2021) Do unemployment benefits and economic aids to pay electricity bills remove the energy poverty risk of Spanish family units during lockdown? A study of COVID-19-induced lockdown. Energ Policy 150. https://doi.org/10.1016/j.enpol.2020.112117

  12. Bienvenido-Huertas D (2021) Influence of the type of thermostat on the energy saving obtained with adaptive setpoint temperatures: analysis in the current and future scenario. Energ Build 244:111024. https://doi.org/10.1016/j.enbuild.2021.111024

    Article  Google Scholar 

  13. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C, Oliveira MJ (2020) Influence of adaptive energy saving techniques on office buildings located in cities of the Iberian Peninsula. Sustain Cities Soc 53:101944. https://doi.org/10.1016/j.scs.2019.101944

    Article  Google Scholar 

  14. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C, Pulido-Arcas JA (2021) Applying the mixed-mode with an adaptive approach to reduce the energy poverty in social dwellings: the case of Spain. Energy 237. https://doi.org/10.1016/j.energy.2021.121636

  15. Bienvenido-Huertas D, Sánchez-García D, Pérez-Fargallo A, Rubio-Bellido C (2020) Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature. Build Environ 170. https://doi.org/10.1016/j.buildenv.2019.106612

  16. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C, Marín-García D (2021) Potential of applying adaptive strategies in buildings to reduce the severity of fuel poverty according to the climate zone and climate change: the case of Andalusia. Sustain Cities Soc 73. https://doi.org/10.1016/j.scs.2021.103088

  17. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C (2020) Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings. Energy 190. https://doi.org/10.1016/j.energy.2019.116448

  18. Bienvenido-Huertas D (2020) Analysis of the relationship of the improvement of façades and thermal bridges of Spanish building stock with the mitigation of its energy and environmental impact. Energies 13. https://doi.org/10.3390/en13174499

  19. Gastines M, Pattini A (2019) Propiedades energéticas de tecnologías de ventanas en Argentina. Rev. Hábitat Rev. Sustentable. 9:47–57

    Google Scholar 

  20. E.I. 10077-2 (2003) Thermal performance of windows, doors and shutters—calculation of thermal transmittance—numerical method for frames

    Google Scholar 

  21. Rosen R, Boschert S, Sohr A (2018) Next generation digital twin. Atp Mag 60:86–96. https://doi.org/10.17560/ATP.V60I10.2371

  22. Al-Sehrawy R, Kumar B (2020) Digital twins in architecture, engineering, construction and operations. A brief review and analysis. Lect Notes Civ Eng 98:924–939. https://doi.org/10.1007/978-3-030-51295-8_64

  23. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary perspectives on complex systems, pp 85–113. https://doi.org/10.1007/978-3-319-38756-7_4

  24. Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, Guo Z, Lu SC-Y, Nee AYC (2018) Digital twin-driven product design framework. 57:3935–3953. https://doi.org/10.1080/00207543.2018.1443229

  25. Angjeliu G, Coronelli D, Cardani G (2020) Development of the simulation model for Digital Twin applications in historical masonry buildings: the integration between numerical and experimental reality. Comput Struct 238:106282. https://doi.org/10.1016/J.COMPSTRUC.2020.106282

    Article  Google Scholar 

  26. Wong JKW, Li H, Wang H, Huang T, Luo E, Li V (2013) Toward low-carbon construction processes: the visualisation of predicted emission via virtual prototyping technology. Autom Constr 33:72–78. https://doi.org/10.1016/J.AUTCON.2012.09.014

    Article  Google Scholar 

  27. Götz CS, Karlsson P, Yitmen I (2020) Exploring applicability, interoperability and integrability of Blockchain-based digital twins for asset life cycle management. Smart Sustain Built Environ. https://doi.org/10.1108/SASBE-08-2020-0115/FULL/PDF

    Article  Google Scholar 

  28. Macchi M, Roda I, Negri E, Fumagalli L (2018) Exploring the role of digital twin for asset lifecycle management. IFAC-PapersOnLine 51:790–795. https://doi.org/10.1016/J.IFACOL.2018.08.415

    Article  Google Scholar 

  29. Moin S, Karim A, Safdar Z, Safdar K, Ahmed E, Imran M (2019) Securing IoTs in distributed blockchain: analysis, requirements and open issues. Futur Gener Comput Syst 100:325–343. https://doi.org/10.1016/J.FUTURE.2019.05.023

    Article  Google Scholar 

  30. Wong JKW, Ge J, He SX (2018) Digitisation in facilities management: a literature review and future research directions. Autom Constr 92:312–326. https://doi.org/10.1016/J.AUTCON.2018.04.006

    Article  Google Scholar 

  31. Teni M, Krstić H, Kosiński P (2019) Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energ Build 203:109417. https://doi.org/10.1016/j.enbuild.2019.109417

    Article  Google Scholar 

  32. Tejedor B, Casals M, Gangolells M (2018) Assessing the influence of operating conditions and thermophysical properties on the accuracy of in-situ measured U-values using quantitative internal infrared thermography. Energ Build 171:64–75. https://doi.org/10.1016/j.enbuild.2018.04.011

    Article  Google Scholar 

  33. Tejedor B, Casals M, Gangolells M, Roca X (2017) Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energ Build 151:187–197. https://doi.org/10.1016/j.enbuild.2017.06.040

    Article  Google Scholar 

  34. Bienvenido-Huertas D, Bermúdez J, Moyano J, Marín D (2019) Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls. Energ Build 184:99–113. https://doi.org/10.1016/j.enbuild.2018.11.028

    Article  Google Scholar 

  35. Bienvenido-Huertas D, Bermúdez J, Moyano JJ, Marín D (2019) Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Build Environ 149:512–525. https://doi.org/10.1016/j.buildenv.2018.12.056

    Article  Google Scholar 

  36. Evangelisti L, Guattari C, Gori P, Bianchi F (2017) Heat transfer study of external convective and radiative coefficients for building applications. Energ Build 151:429–438. https://doi.org/10.1016/j.enbuild.2017.07.004

    Article  Google Scholar 

  37. Evangelisti L, Guattari C, Asdrubali F (2018) Influence of heating systems on thermal transmittance evaluations: simulations, experimental measurements and data post-processing. Energ Build 168:180–190. https://doi.org/10.1016/j.enbuild.2018.03.032

    Article  Google Scholar 

  38. Ficco G, Iannetta F, Ianniello E, D’Ambrosio Alfano FR, Dell’Isola M (2015) U-value in situ measurement for energy diagnosis of existing buildings. Energ Build 104:108–121. https://doi.org/10.1016/j.enbuild.2015.06.071

  39. Bienvenido-Huertas D, Rubio-Bellido C, Pérez-Ordóñez JL, Oliveira MJ (2020) Automation and optimization of in-situ assessment of wall thermal transmittance using a Random Forest algorithm. Build Environ 168. https://doi.org/10.1016/j.buildenv.2019.106479

  40. Bienvenido-Huertas D, Rubio-Bellido C, Solís-Guzmán J, Oliveira MJ (2020) Experimental characterisation of the periodic thermal properties of walls using artificial intelligence. Energy 203. https://doi.org/10.1016/j.energy.2020.117871

  41. Lucchi E, Roberti F, Alexandra T (2018) Definition of an experimental procedure with the hot box method for the thermal performance evaluation of inhomogeneous walls. Energ Build 179:99–111. https://doi.org/10.1016/j.enbuild.2018.08.049

    Article  Google Scholar 

  42. Lucchi E (2017) Thermal transmittance of historical brick masonries: a comparison among standard data, analytical calculation procedures, and in situ heat flow meter measurements. Energ Build 134:171–184. https://doi.org/10.1016/j.enbuild.2016.10.045

    Article  Google Scholar 

  43. Malvoni M, Baglivo C, Congedo PM, Laforgia D (2016) CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077. Energy 111:430–438. https://doi.org/10.1016/j.energy.2016.06.002

    Article  Google Scholar 

  44. Lechowska AA, Schnotale JA, Baldinelli G (2017) Window frame thermal transmittance improvements without frame geometry variations: an experimentally validated CFD analysis. Energ Build 145:188–199. https://doi.org/10.1016/j.enbuild.2017.04.002

    Article  Google Scholar 

  45. Baldinelli G, Bianchi F (2014) Windows thermal resistance: infrared thermography aided comparative analysis among finite volumes simulations and experimental methods. Appl Energ 136:250–258. https://doi.org/10.1016/J.APENERGY.2014.09.021

    Article  Google Scholar 

  46. International Organization for Standardization, ISO 9869-1:2014—Thermal insulation—Building elements—In situ measurement of thermal resistance and thermal transmittance. Part 1: Heat flow meter method, Geneva, Switzerland, 2014

    Google Scholar 

  47. Soares N, Martins C, Gonçalves M, Santos P, da Silva LS, Costa JJ (2019) Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: a review. Energ Build 182:88–110. https://doi.org/10.1016/j.enbuild.2018.10.021

    Article  Google Scholar 

  48. Fokaides PA, Kalogirou SA (2011) Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes. Appl Energ 88:4358–4365. https://doi.org/10.1016/j.apenergy.2011.05.014

    Article  Google Scholar 

  49. B. Software, Psi-Therm GmbH (2020)

    Google Scholar 

  50. Osello A (2012) The future of drawing with BIM for engineers and architects-. Dario Flaccovio Ed. Srl.

    Google Scholar 

  51. Bienvenido-Huertas D, Moyano J, Rodríguez-Jiménez CE, Muñoz-Rubio A, Bermúdez Rodríguez FJ (2020) Quality control of the thermal properties of superstructures in accommodation spaces in naval constructions. Sustainability 12:4194. https://doi.org/10.3390/su12104194

  52. Bienvenido-Huertas D, Pérez-Ordóñez JL, Moyano J, Seara-Paz S (2020) Towards an in-situ evaluation methodology of thermal resistance of basement walls in buildings. Energ Build 208:109643. https://doi.org/10.1016/j.enbuild.2019.109643

    Article  Google Scholar 

  53. N.I.I. 10077-2 (2012) Thermal performance of windows, doors and shutters—Calculation of thermal transmittance—Part 2: Numerical

    Google Scholar 

  54. Asdrubali F, Baldinelli G, Bianchi F (2012) A quantitative methodology to evaluate thermal bridges in buildings. Appl Energ 97:365–373. https://doi.org/10.1016/j.apenergy.2011.12.054

    Article  Google Scholar 

  55. O’Grady M, Lechowska AA, Harte AM (2017) Infrared thermography technique as an in-situ method of assessing the heat loss through thermal bridging. Energ Build 135:20–32. https://doi.org/10.1016/j.enbuild.2016.11.039

    Article  Google Scholar 

  56. Scheuer C, Boot E, Carse N, Clardy A, Gallagher J, Heck S, Marron S, Martinez-Alvarez L, Masarykova D, Mcmillan P, Murphy F, Steel E, Van Ekdom H, Vecchione H (1978) Application of aerial infrared thermography to the measurement of building heat loss. Build Syst Des 75:24–26. https://doi.org/10.2/JQUERY.MIN.JS

    Google Scholar 

  57. Glaessgen EH, Stargel DS (2012) The digital twin paradigm for future NASA and U.S. Air force vehicles. Collect technical paper—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. https://doi.org/10.2514/6.2012-1818.

  58. Kang JS, Chung K, Hong EJ (2021) Multimedia knowledge-based bridge health monitoring using digital twin. Multimed Tools Appl 80:34609–34624. https://doi.org/10.1007/S11042-021-10649-X/FIGURES/11

    Article  Google Scholar 

  59. Stanley R, Thurnell D (2014) The benefits of, and barriers to, implementation of 5D BIM for quantity surveying in New Zealand, Australas. J Constr Econ Build 14(1):105–117. https://doi.org/10.3316/INFORMIT.200817347855487

    Article  Google Scholar 

  60. Kim JB, Jeong W, Clayton MJ, Haberl JS, Yan W (2015) Developing a physical BIM library for building thermal energy simulation. Autom Constr 50:16–28. https://doi.org/10.1016/J.AUTCON.2014.10.011

    Article  Google Scholar 

  61. Cemesova A, Hopfe CJ, McLeod RS (2015) PassivBIM: enhancing interoperability between BIM and low energy design software. Autom Constr 57:17–32. https://doi.org/10.1016/J.AUTCON.2015.04.014

    Article  Google Scholar 

  62. Zhang X, Shen J, Saini PK, Lovati M, Han M, Huang P, Huang Z (2021) Digital twin for accelerating sustainability in positive energy district: a review of simulation tools and applications. Front Sustain Cities 3:35. https://doi.org/10.3389/FRSC.2021.663269/BIBTEX

    Article  Google Scholar 

  63. Khajavi SH, Motlagh NH, Jaribion A, Werner LC, Holmstrom J (2019) Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE Access 7:147406–147419. https://doi.org/10.1109/ACCESS.2019.2946515

    Article  Google Scholar 

  64. G. Digital(2022) GE Predix Platform | Industrial IoT Platform | GE Digital

    Google Scholar 

  65. Trebilcock M (2021) Proceso de Diseño Integrado: nuevos paradigmas en arquitectura sustentable. Arquitetura Rev 5:65–75. https://doi.org/10.4013/arq.2009.52.01

    Article  Google Scholar 

  66. Ruikar K, Kotecha K, Sandbhor S, Thomas A (eds), Deng M, Menassa CC, Kamat VR (2021) From BIM to digital twins: a systematic review of the evolution of intelligent building representations in the AEC-FM industry, ITcon Vol. 26, Special Issue Next Generation ICT—How distant is ubiquitous computing, pp 58–83, http://www.itcon.org/2021/5. https://doi.org/10.36680/J.ITCON.2021.005.

  67. Bienvenido-Huertas D, Pulido-Arcas JA, Rubio-Bellido C, Pérez-Fargallo A (2020) Influence of future climate changes scenarios on the feasibility of the adaptive comfort model in Japan. Sustain Cities Soc 61:102303. https://doi.org/10.1016/j.scs.2020.102303

    Article  Google Scholar 

  68. Bienvenido-Huertas D, Sánchez-García D, Rubio-Bellido C (2022) Influence of the RCP scenarios on the effectiveness of adaptive strategies in buildings around the world. Build Environ 208. https://doi.org/10.1016/j.buildenv.2021.108631

  69. Bienvenido-Huertas D, Rubio-Bellido C, Marín-García D, Canivell J (2021) Influence of the Representative Concentration Pathways (RCP) scenarios on the bioclimatic design strategies of the built environment. Sustain Cities Soc 72:103042. https://doi.org/10.1016/j.scs.2021.103042

    Article  Google Scholar 

  70. Bienvenido-Huertas D, Nieto-Julián JE, Moyano JJ, Macías-Bernal JM, Castro J (2019) Implementing artificial intelligence in H-BIM using the J48 algorithm to manage historic buildings. Int J Archit Herit 1–13.https://doi.org/10.1080/15583058.2019.1589602

  71. Andriasyan M, Moyano J, Nieto-Julián JE, Antón D (2020) From point cloud data to building information modelling: an automatic parametric workflow for heritage. Rem Sens 12. https://doi.org/10.3390/rs12071094

  72. Moyano J, Nieto-Julián JE, Antón D, Cabrera E, Bienvenido-Huertas D, Sánchez N (2020) Suitability study of structure-from-motion for the digitisation of architectural (Heritage) spaces to apply divergent photograph collection. Symmetry (Basel) 12:1–25. https://doi.org/10.3390/sym12121981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Moyano-Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Alconchel, M., Nieto-Julián, J.E., Carretero-Ayuso, M.J., Moyano-Campos, J. (2022). Methodology for the Evaluation of an Energetic Model of Thermal Transmittance in a Window by Means of Horizontal Aggregation (HA) from Short-range Photogrammetry for Model Digital Twin. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics