Skip to main content

Combining Characterization Tests of Building Envelope Thermal Transmittance with the Acoustic Characterization Through Data Mining Approaches

  • Chapter
  • First Online:
New Technologies in Building and Construction

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 258))

Abstract

Climate change has forced many sectors to establish measures to achieve decarbonisation. Building is amongst these sectors with the greatest challenge. To achieve decarbonisation, energy improvement measures should be established. These improvement measures depend on an appropriate characterization of the existing buildings. For this purpose, there are many experimental tests based on measuring envelope variables, such as surface temperature and heat flow. Thus, thermal parameters of envelopes could be accurately known. In view of this circumstance, the question arises as to whether it is possible to know other envelope parameters additionally, such as sound insulation. The previous studies have shown the feasibility of characterizing envelope variables through artificial intelligence predictive models. Thus, this study characterizes sound insulation by using these predictive models with the variables obtained from the thermal monitoring of an envelope through thermal transmittance tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. Brussels, Belgium

    Google Scholar 

  2. Kurekci NA (2016) Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energ Build 118:197–213. https://doi.org/10.1016/j.enbuild.2016.03.004

    Article  Google Scholar 

  3. Vine EL, Kazakevicius E (1999) Residential energy use in Lithuania: the prospects for energy efficiency. Energy 24:591–603. https://doi.org/10.1016/S0360-5442(99)00013-4

    Article  Google Scholar 

  4. Invidiata A, Lavagna M, Ghisi E (2018) Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build Environ 139:58–68. https://doi.org/10.1016/j.buildenv.2018.04.041

    Article  Google Scholar 

  5. Rubio-Bellido C, Perez-Fargallo A, Pulido-Arcas JA (2016) Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy 114:569–585. https://doi.org/10.1016/j.energy.2016.08.021

    Article  Google Scholar 

  6. Bienvenido-Huertas D, Moyano J, Marín D, Fresco-Contreras R (2019) Review of in situ methods for assessing the thermal transmittance of walls. Renew Sustain Energ Rev 102:356–371. https://doi.org/10.1016/j.rser.2018.12.016

    Article  Google Scholar 

  7. Cesaratto PG, De Carli M, Marinetti S (2011) Effect of different parameters on the in situ thermal conductance evaluation. Energ Build 43:1792–1801. https://doi.org/10.1016/j.enbuild.2011.03.021

    Article  Google Scholar 

  8. Desogus G, Mura S, Ricciu R (2011) Comparing different approaches to in situ measurement of building components thermal resistance. Energ Build 43:2613–2620. https://doi.org/10.1016/j.enbuild.2011.05.025

    Article  Google Scholar 

  9. Trethowen H (1986) Measurement errors with surface-mounted heat flux sensors. Build Environ 21:41–56. https://doi.org/10.1016/0360-1323(86)90007-7

    Article  Google Scholar 

  10. Meng X, Yan B, Gao Y, Wang J, Zhang W, Long E (2015) Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energ Build 86:754–765. https://doi.org/10.1016/j.enbuild.2014.11.005

    Article  Google Scholar 

  11. Gaspar K, Casals M, Gangolells M (2018) In situ measurement of façades with a low U-value: avoiding deviations. Energ Build 170:61–73. https://doi.org/10.1016/j.enbuild.2018.04.012

    Article  Google Scholar 

  12. Ahmad A, Maslehuddin M, Al-Hadhrami LM (2014) In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energ Build 84:132–141. https://doi.org/10.1016/j.enbuild.2014.07.048

    Article  Google Scholar 

  13. Litti G, Khoshdel S, Audenaert A, Braet J (2015) Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energ Build 105:393–411. https://doi.org/10.1016/j.enbuild.2015.07.049

    Article  Google Scholar 

  14. Grubeša IN, Teni M, Krstić H, Vračević M (2019) Influence of freeze/thaw cycles on mechanical and thermal properties of masonry wall and masonry wall materials. Energies 12:1–11. https://doi.org/10.3390/en12081464

    Article  Google Scholar 

  15. Bienvenido-Huertas D, Rodríguez-Álvaro R, Moyano JJ, Rico F, Marín D (2018) Determining the U-value of façades using the thermometric method: potentials and limitations. Energies 11:1–17. https://doi.org/10.3390/en11020360

    Article  Google Scholar 

  16. Kim S-H, Lee J-H, Kim J-H, Yoo S-H, Jeong H-G (2018) The feasibility of improving the accuracy of in situ measurements in the air-surface temperature ratio method. Energies 11:1–18. https://doi.org/10.3390/en11071885

    Article  Google Scholar 

  17. International Organization for Standardization (2007) ISO 6946:2007—Building components and building elements—Thermal resistance and thermal transmittance—Calculation method. Geneva, Switzerland

    Google Scholar 

  18. Ficco G, Iannetta F, Ianniello E, D’Ambrosio Alfano FR, Dell’Isola M (2015) U-value in situ measurement for energy diagnosis of existing buildings. Energ Build 104:108–121. https://doi.org/10.1016/j.enbuild.2015.06.071

    Article  Google Scholar 

  19. Bienvenido-Huertas D, Rubio-Bellido C, Pérez-Ordóñez JL, Oliveira MJ (2020) Automation and optimization of in-situ assessment of wall thermal transmittance using a Random Forest algorithm. Build Environ 168. https://doi.org/10.1016/j.buildenv.2019.106479

  20. Bienvenido-Huertas D, Rubio-Bellido C, Solís-Guzmán J, Oliveira MJ (2020) Experimental characterisation of the periodic thermal properties of walls using artificial intelligence. Energy 203. https://doi.org/10.1016/j.energy.2020.117871

  21. Eduardo Torroja Institute for Construction Science (2010) Constructive elements catalogue of the CTE

    Google Scholar 

  22. Kurtz F, Monzón M, López-Mesa B (2015) Energy and acoustics related obsolescence of social housing of Spain’s post-war in less favoured urban areas. The case of Zaragoza. Inf La Construcción 67:m021. https://doi.org/10.3989/ic.14.062

  23. Domínguez-Amarillo S, Sendra JJ, Oteiza I (2016) La envolvente térmica de la vivienda social. El caso de Sevilla, 1939 a 1979. Editorial CSIC, Madrid

    Google Scholar 

  24. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  MathSciNet  Google Scholar 

  25. Larivière B, Van Den Poel D (2005) Predicting customer retention and profitability by using random forests and regression forests techniques. Exp Syst Appl 29:472–484. https://doi.org/10.1016/j.eswa.2005.04.043

    Article  Google Scholar 

  26. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MATH  Google Scholar 

  27. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  28. Assouline D, Mohajeri N, Scartezzini JL (2018) Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Appl Energ 217:189–211. https://doi.org/10.1016/j.apenergy.2018.02.118

    Article  Google Scholar 

  29. Zhou Y, Qiu G (2018) Random forest for label ranking. Exp Syst Appl 112:99–109. https://doi.org/10.1016/j.eswa.2018.06.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bienvenido-Huertas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berti, K., Tejedor, B., Durán, J., Bienvenido-Huertas, D. (2022). Combining Characterization Tests of Building Envelope Thermal Transmittance with the Acoustic Characterization Through Data Mining Approaches. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics