Skip to main content

Information Systematisation Towards Rational Building Maintenance Decisions

  • Chapter
  • First Online:
New Technologies in Building and Construction

Abstract

The presented research highlights different ways of collecting, systematising and using data in the field of building maintenance towards rational decisions. First, the harmonisation of the information collected during building inspections is presented. Such harmonisation was developed within a global inspection system for the building envelope, including classification lists of defects, their causes, diagnosis methods and repair techniques, as well as correlation matrices between these items. Using harmonised inspection systems during fieldwork guides the procedures and makes the collected data more objective. With sound information about the degradation of building elements, their remaining service life may be estimated. Different service life prediction methods were adopted, considering their advantages to decide on the best moment to carry out maintenance activities. Computational tools of service life prediction were developed, with different options for users, according to their objectives and available information. Following these methodologies, a condition-based maintenance model was developed, using Petri nets. Different types of maintenance strategies were determined and then compared, according to the progression of degradation, service life, costs and impact on building users. Such a condition-based maintenance model allows better decisions, as more data are available, considering different factors, and not only costs, for instance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madureira S, Flores-Colen I, de Brito J, Pereira C (2017) Maintenance planning of facades in current buildings. Constr Build Mater 147:790–802. https://doi.org/10.1016/j.conbuildmat.2017.04.195

    Article  Google Scholar 

  2. Palmer RD (2006) Maintenance planning and scheduling handbook, 2nd edn. McGraw Hill, New York, NY USA

    Google Scholar 

  3. Flores-Colen I, de Brito J (2010) Discussion of proactive maintenance strategies in façades’ coatings of social housing. J Build Appraisal 5:223–240. https://doi.org/10.1057/jba.2009.21

    Article  Google Scholar 

  4. Flores-Colen I, de Brito J (2010) A systematic approach for maintenance budgeting of buildings façades based on predictive and preventive strategies. Constr Build Mater 24:1718–1729. https://doi.org/10.1016/j.conbuildmat.2010.02.017

    Article  Google Scholar 

  5. Pitt TJ (1997) Data requirements for the prioritization of predictive building maintenance. Facilities 15:97–104. https://doi.org/10.1108/02632779710160612

    Article  Google Scholar 

  6. Chartered Institution of Building Services Engineers (2008) Maintenance engineering and management. A guide for designers, maintainers, building owners and operators, and facilities managers. Chartered Institution of Building Services Engineers, London, UK

    Google Scholar 

  7. de Brito J, Pereira C, Silvestre JD, Flores-Colen I (2020) Expert knowledge-based inspection systems. In: Inspection, diagnosis and repair of the building envelope. Springer, Cham, Switzerland

    Google Scholar 

  8. CIB W86 (1993) Building pathology: a state-of-the-art report. International Council for Research and Innovation in Building and Construction, Delft, The Netherlands

    Google Scholar 

  9. Garcez N, Lopes N, de Brito J, Sá G (2012) Pathology, diagnosis and repair of pitched roofs with ceramic tiles: statistical characterisation and lessons learned from inspections. Constr Build Mater 36:807–819. https://doi.org/10.1016/j.conbuildmat.2012.06.049

    Article  Google Scholar 

  10. Garcez N, Lopes N, de Brito J, Silvestre J (2012) System of inspection, diagnosis and repair of external claddings of pitched roofs. Constr Build Mater 35:1034–1044. https://doi.org/10.1016/j.conbuildmat.2012.06.047

    Article  Google Scholar 

  11. Conceição J, Poça B, de Brito J et al (2017) Inspection, diagnosis, and rehabilitation system for flat roofs. J Perform Constr Facil 31:04017100. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001094

    Article  Google Scholar 

  12. Conceição J, Poça B, de Brito J et al (2019) Data analysis of inspection, diagnosis, and rehabilitation of flat roofs. J Perform Constr Facil 33:04018100. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001252

    Article  Google Scholar 

  13. Santos A, Vicente M, de Brito J et al (2017) Inspection, diagnosis, and rehabilitation system of door and window frames. J Perform Constr Facil 31:04016118. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000992

    Article  Google Scholar 

  14. Santos A, Vicente M, de Brito J et al (2017) Analysis of the inspection, diagnosis, and repair of external door and window frames. J Perform Constr Facil 31:04017098. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001095

    Article  Google Scholar 

  15. Sá G, Sá J, de Brito J, Amaro B (2014) Inspection and diagnosis system for rendered walls. Int J Civ Eng 12:279–290

    Google Scholar 

  16. Sá G, Sá J, de Brito J, Amaro B (2015) Statistical survey on inspection, diagnosis and repair of wall renderings. J Civ Eng Manag 21:623–636. https://doi.org/10.3846/13923730.2014.890666

    Article  Google Scholar 

  17. Amaro B, Saraiva D, de Brito J, Flores-Colen I (2014) Statistical survey of the pathology, diagnosis and rehabilitation of ETICS in walls. J Civ Eng Manag 20:511–526. https://doi.org/10.3846/13923730.2013.801923

    Article  Google Scholar 

  18. Amaro B, Saraiva D, de Brito J, Flores-Colen I (2013) Inspection and diagnosis system of ETICS on walls. Constr Build Mater 47:1257–1267. https://doi.org/10.1016/j.conbuildmat.2013.06.024

    Article  Google Scholar 

  19. Pires R, de Brito J, Amaro B (2015) Statistical survey of the inspection, diagnosis and repair of painted rendered façades. Struct Infrastruct Eng 11:605–618. https://doi.org/10.1080/15732479.2014.890233

    Article  Google Scholar 

  20. Pires R, de Brito J, Amaro B (2015) Inspection, diagnosis, and rehabilitation system of painted rendered façades. J Perform Constr Facil 29:04014062. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000534

    Article  Google Scholar 

  21. da Silva C, Coelho F, de Brito J et al (2017) Statistical survey on inspection, diagnosis and repair of architectural concrete surfaces. J Perform Constr Facil 31:04017097. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001092

    Article  Google Scholar 

  22. da Silva C, Coelho F, de Brito J et al (2017) Inspection, diagnosis, and repair system for architectural concrete surfaces. J Perform Constr Facil 31:04017035. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001034

    Article  Google Scholar 

  23. Silvestre JD, de Brito J (2011) Ceramic tiling in building façades: inspection and pathological characterization using an expert system. Constr Build Mater 25:1560–1571. https://doi.org/10.1016/j.conbuildmat.2010.09.039

    Article  Google Scholar 

  24. Silvestre JD, de Brito J (2010) Inspection and repair of ceramic tiling within a building management system. J Mater Civ Eng 22:39–48. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:1(39)

    Article  Google Scholar 

  25. Neto N, de Brito J (2011) Inspection and defect diagnosis system for natural stone cladding. J Mater Civ Eng 23:1433–1443. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000314

    Article  Google Scholar 

  26. Neto N, de Brito J (2012) Validation of an inspection and diagnosis system for anomalies in natural stone cladding (NSC). Constr Build Mater 30:224–236. https://doi.org/10.1016/j.conbuildmat.2011.12.032

    Article  Google Scholar 

  27. Delgado A, de Brito J, Silvestre JD (2013) Inspection and diagnosis system for wood flooring. J Perform Constr Facil 27:564–574. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000342

    Article  Google Scholar 

  28. Delgado A, Pereira C, de Brito J, Silvestre JD (2018) Defect characterization, diagnosis and repair of wood flooring based on a field survey. Mater Constr 68:1–13. https://doi.org/10.3989/mc.2018.01817

    Article  Google Scholar 

  29. Garcia J, de Brito J (2008) Inspection and diagnosis of epoxy resin industrial floor coatings. J Mater Civ Eng 20:128–136. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(128))

  30. Carvalho C, de Brito J, Flores-Colen I, Pereira C (2018) Inspection, diagnosis, and rehabilitation system for vinyl and linoleum floorings in health infrastructures. J Perform Constr Facil 32:04018078. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001229

    Article  Google Scholar 

  31. Carvalho C, de Brito J, Flores-Colen I, Pereira C (2019) Pathology and rehabilitation of vinyl and linoleum floorings in health infrastructures: statistical survey. Buildings 9:116. https://doi.org/10.3390/buildings9050116

    Article  Google Scholar 

  32. Tuna J, Feiteira J, Flores-Colen I et al (2015) In situ characterization of damaging soluble salts in wall construction materials. J Perform Constr Facil 29:04014127. https://doi.org/10.1061/(asce)cf.1943-5509.0000616

    Article  Google Scholar 

  33. Branco FA, de Brito J (2004) Handbook of concrete bridge management. ASCE Press, Reston, VA USA

    Book  Google Scholar 

  34. Almeida Santos L, Flores-Colen I, Gomes MG (2013) In-situ techniques for mechanical performance and degradation analysis of rendering walls. Restoration Build Monuments 19:255–266. https://doi.org/10.1515/rbm-2013-6606

    Article  Google Scholar 

  35. Bungey JH, Millard SG, Grantham MG (2006) Testing of concrete in structures, 4th edn. Taylor & Francis, Oxon, UK

    Book  Google Scholar 

  36. Douglas J, Noy EA (2011) Building surveys and reports, 4th edn. Wiley-Blackwell, Chichester, UK

    Google Scholar 

  37. Glover P (2009) Building surveys, 7th edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  38. Seeley IH (1987) Building maintenance, 2nd edn. Palgrave, Hampshire, UK

    Google Scholar 

  39. Van Balen K (2015) Preventive conservation of historic buildings. Restoration Build Monuments 21:99–104. https://doi.org/10.1515/rbm-2015-0008

    Article  Google Scholar 

  40. Houghton-Evans RW (2005) Well built? A forensic approach to the prevention, diagnosis and cure of building defects. RIBA Enterprises, London, UK

    Google Scholar 

  41. Pereira C, de Brito J, Silvestre JD (2020) Harmonising the classification of diagnosis methods within a global building inspection system: proposed methodology and analysis of fieldwork data. Eng Fail Anal 115:104627. https://doi.org/10.1016/j.engfailanal.2020.104627

  42. Pereira C, de Brito J, Silvestre JD (2020) Harmonising the classification of the causes of defects in a global building inspection system: proposed methodology and analysis of fieldwork data. Sustainability 12:5564. https://doi.org/10.3390/su12145564

    Article  Google Scholar 

  43. Pereira C, de Brito J, Silvestre JD (2021) Harmonized classification of repair techniques in a global inspection system: proposed methodology and analysis of fieldwork data. J Perform Constr Facil 35:04020122. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001529

    Article  Google Scholar 

  44. Pereira C, de Brito J, Silvestre JD (2021) Harmonising correlation matrices within a global building expert knowledge-based inspection system. Constr Build Mater 272:121655. https://doi.org/10.1016/j.conbuildmat.2020.121655

  45. Pereira C, Silva JN, Silva A et al (2021) Building inspection system software based on expert-knowledge. J Perform Constr Facil (accepted). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001700

  46. de Brito J, Branco FA, Ibañez M (1994) Knowledge-based concrete bridge inspection system. Concr Int 16:29–63

    Google Scholar 

  47. Shohet IM, Paciuk M (2006) Service life prediction of exterior cladding components under failure conditions. Constr Manag Econ 24(2):131–148. https://doi.org/10.1080/01446190500184535

    Article  Google Scholar 

  48. Mann L, Saxena A, Knapp GM (1995) Statistical-based or condition-based preventive maintenance? J Qual Maintenance Eng 1(1):46–59

    Article  Google Scholar 

  49. Vicente R, Ferreira TM, Mendes da Silva JAR (2015) Supporting urban regeneration and building refurbishment. Strategies for building appraisal and inspection of old building stock in city centres. J Cult Heritage 16(1):1–14. https://doi.org/10.1016/j.culher.2014.03.004

  50. Sjöström C (1985) Overview of methodologies for prediction of service life. In: Problems in service life prediction of building and construction materials. NATO ASI series, vol 95, pp 3–20

    Google Scholar 

  51. Gaspar PL, de Brito J (2008) Quantifying environmental effects on cement-rendered facades: a comparison between different degradation indicators. Build Environ 43(11):1818–1828. https://doi.org/10.1016/j.buildenv.2007.10.022

    Article  Google Scholar 

  52. Gaspar PL, de Brito J (2011) Limit states and service life of cement renders on façades. Mater Civil Eng 23(10):1393–1404. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000312

    Article  Google Scholar 

  53. Silva A, de Brito J, Gaspar P (2016) Comparative analysis of service life prediction methods applied to rendered façades. Mater Struct 49(11):4893–4910. https://doi.org/10.1617/s11527-016-0832-6

  54. Silva A, de Brito J, Gaspar P (2016) Methodologies for service life prediction of buildings: with a focus on façade claddings. Springer, Switzerland

    Book  Google Scholar 

  55. Silva A, de Brito J, Gaspar P (2011) Service life prediction model applied to natural stone wall claddings (directly adhered to the substrate). Constr Build Mater 25(9):3674–3684. https://doi.org/10.1016/j.conbuildmat.2011.03.064

    Article  Google Scholar 

  56. Silva A, Gaspar PL, de Brito J (2014) Durability of current renderings: a probabilistic analysis. Autom Constr 44:92–102. https://doi.org/10.1016/j.autcon.2014.04.002

    Article  Google Scholar 

  57. Silva A, Neves LC, Gaspar PL, de Brito J (2016) Probabilistic transition of condition: render facades. Build Res Inf 44(3):301–318. https://doi.org/10.1080/09613218.2015.1023645

    Article  Google Scholar 

  58. Silva A, Dias JLR, Gaspar PL, de Brito J (2013) Statistical models applied to service life prediction of rendered façades. Autom Constr 30:151–160. https://doi.org/10.1016/j.autcon.2012.11.028

    Article  Google Scholar 

  59. Vieira SM, Silva A, Sousa JMC, de Brito J, Gaspar PL (2015) Modelling the service life of rendered façades using fuzzy systems. Autom Constr 51:1–7. https://doi.org/10.1016/j.autcon.2014.12.011

    Article  Google Scholar 

  60. Silva A, de Brito J, Gaspar PL (2012) Application of the factor method to maintenance decision support for stone cladding. Autom Constr 22(3):165–174. https://doi.org/10.1016/j.autcon.2011.06.014

    Article  Google Scholar 

  61. Silva A, de Brito J, Gaspar PL (2015) Stochastic approach to the factor method applied to service life prediction of rendered façades. J Mater Civ Eng 04015130. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001409

  62. Faber MH (2007) Risk and safety in civil engineering. Lecture notes. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  63. Arismendi R, Barros A, Grall A (2021) Piecewise deterministic Markov process for condition-based maintenance models—application to critical infrastructures with discrete-state deterioration. Reliab Eng Syst Saf 212:107540. https://doi.org/10.1016/j.ress.2021.107540

  64. Lair W, Mercier S, Roussignol M, Ziani R (2011) Piecewise deterministic Markov processes and maintenance modeling: application to maintenance of a train air-conditioning system. Proc Inst Mech Eng O J Risk Reliab 225(2):199–209. https://doi.org/10.1177/1748006XJRR347

    Article  Google Scholar 

  65. Løken E (2007) Use of multicriteria decision analysis methods for energy planning problems. Renew Sustain Energ Rev 11(7):1584–1595. https://doi.org/10.1016/j.rser.2005.11.005

    Article  Google Scholar 

  66. Lounis Z, Madanat SM (2002) Integrating mechanistic and statistical deterioration models for effective bridge management. In: Proceedings of the 7th ASCE International conference on applications of advanced technology in transportation, Boston, USA

    Google Scholar 

  67. Phares BM, Washer GA, Rolander DD, Graybeal BA, Moore M (2004) Routine highway bridge inspection condition documentation accuracy and reliability. J Bridge Eng 9(4):403–413. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(403)

    Article  Google Scholar 

  68. Corotis RB, Ellis J, Jiang M (2005) Modeling of risk-based inspection, maintenance and life-cycle cost with partially observable Markov decision processes. Struct Infrastruct Eng 1(1):75–84. https://doi.org/10.1080/15732470412331289305

    Article  Google Scholar 

  69. Al-Ahmari A (2016) Optimal robotic cell scheduling with controllers using mathematically based timed Petri nets. Inf Sci 329:638–648. https://doi.org/10.1016/j.ins.2015.09.053

    Article  Google Scholar 

  70. Chen Y, Li Z, Barkaoui K (2014) Maximally permissive liveness-enforcing supervisor with lowest implementation cost for flexible manufacturing systems. Inf Sci 256(6):74–90. https://doi.org/10.1016/j.ins.2013.07.021

    Article  MathSciNet  MATH  Google Scholar 

  71. Uzam M, Gelen G, Saleh TL (2016) Think-globally-act-locally approach with weighted arcs to the synthesis of a liveness-enforcing supervisor for generalized Petri nets modeling FMSs. Inf Sci 363:235–260. https://doi.org/10.1016/j.ins.2015.09.010

    Article  MATH  Google Scholar 

  72. van der Aalst WM (2002) Making work flow: on the application of petri nets to business process management. In: Proceedings of the 23rd International conference on application and theory of Petri nets, Adelaide, Australia

    Google Scholar 

  73. Tang F, Guo M, Dong M, Li M, Guan H (2008) Towards context-aware workflow management for ubiquitous computing. In: Proceedings of the International conference on embedded software and systems, Sichuan, China

    Google Scholar 

  74. Ferreira C, Neves LC, Silva A, de Brito J (2020) Stochastic maintenance models for ceramic claddings. Struct Infrastruct Eng 16(2):247–265. https://doi.org/10.1080/15732479.2019.1652657

    Article  Google Scholar 

  75. Ferreira C, Silva A, de Brito J, Dias IS, Flores-Colen I (2020) Maintenance modelling of ceramic claddings in pitched roofs based on the evaluation of their in situ degradation condition. Infrastructures 5(9):77. https://doi.org/10.3390/infrastructures5090077

    Article  Google Scholar 

  76. Ferreira C, Silva A, de Brito J, Neves LC (2020) Impact of maintenance strategies on the serviceability of architectural concrete surfaces. In: Life-cycle civil engineering: innovation, theory and practice. CRC Press, Boca Raton, pp 593–599

    Google Scholar 

  77. Ferreira C, Silva A, de Brito J, Dias IS, Flores-Colen I (2021) Definition of a condition-based model for natural stone claddings. J Build Eng 33:101643. https://doi.org/10.1016/j.jobe.2020.101643

  78. Ferreira C, Silva A, de Brito J, Dias IS, Flores-Colen I (2021) Condition-based maintenance strategies to enhance the durability of ETICS. Sustainability 13(12):6677. https://doi.org/10.3390/su13126677

    Article  Google Scholar 

  79. Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G (1994) Modelling with generalized stochastic Petri nets. Wiley

    MATH  Google Scholar 

  80. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580. https://doi.org/10.1109/5.24143

    Article  Google Scholar 

  81. Madanat S (1993) Optimal infrastructure management decisions under uncertainty. Transp Res Part C Emerg Technol 1(1):77–88. https://doi.org/10.1016/0968-090X(93)90021-7

    Article  Google Scholar 

  82. Bocchini P, Saydam D, Frangopol DM (2013) Efficient, accurate, and simple Markov chain model for the life-cycle analysis of bridge groups. Struct Saf 40:51–64. https://doi.org/10.1016/j.strusafe.2012.09.004

    Article  Google Scholar 

  83. Ellingwood BR (2005) Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Struct Infrastruct Eng 1(1):7–18. https://doi.org/10.1080/15732470412331289341

    Article  Google Scholar 

  84. Oberkampf WL, Helton JC, Joslyn CA, Wojtkiewicz SF, Ferson S (2004) Challenge problems: uncertainty in system response given uncertain parameters. Reliab Eng Syst Saf 85(1–3):11–19. https://doi.org/10.1016/j.ress.2004.03.002

    Article  Google Scholar 

  85. Frangopol DM, Liu M (2004) Life-cycle cost analysis for highways bridges: accomplishments and challenges. In: Structures 2004: building on the past, securing the future, Nashville, TN, USA

    Google Scholar 

  86. Ferreira C, Silva A, de Brito J, Dias IS, Flores-Colen I (2021) Criteria for selection of cladding systems based on their maintainability. J Build Eng 39:102260. https://doi.org/10.1016/j.jobe.2021.102260

Download references

Acknowledgements

The authors gratefully acknowledge the support of CERIS (Instituto Superior Técnico, University of Lisbon) and the Fundação para a Ciência e a Tecnologia (FCT) through the FCT project PTDC/ECI-CON/29286/2017 and the FCT Ph.D. Scholarship SFRH/BD/131113/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, C., Silva, A., Ferreira, C., de Brito, J., Flores-Colen, I., Silvestre, J.D. (2022). Information Systematisation Towards Rational Building Maintenance Decisions. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics