Skip to main content

Earth as a Sustainable Construction Material. Characterization of Different Mixtures and Implementation Using the Projected Earth System

  • Chapter
  • First Online:
New Technologies in Building and Construction

Abstract

The use of the earth as a construction material has been carried out all over the world, in walls, ramparts, fortifications. For this reason, research of this type is necessary to implement current techniques in the restoration of rammed earth constructions with the rammed earth technique. In addition, it can be used for the construction of new works for both walls and cladding. The research of the earth as a construction material is presented here through the characterization of the earth itself, in this case, edaphic soils from the weathering of the Alhambra Formation (Spain), and its mixtures with aerial or hydraulic limes and cement of low resistance. In addition, natural or recycled aggregates and additives such as water repellents and ecological enzymes, to replace binders, and additions of powder rubber and textile from used tire waste have been used. The results obtained in all the mixtures, except the one added with rubber and textile powder, are ideal for use in restoration of earth works and new construction, placed on site using the projected earth system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Standard ASTM D2487–11. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)

    Google Scholar 

  2. Ballesteros P, Kirchner H, Fernández M, Ortega J, Quirós JA, Retamero F, Sitjes E, Torró J, Vigil A (2010) Por una arqueología agraria de las sociedades medievales hispánicas. Propuesta de un protocolo de investigación. In Por una arqueología agraria. Perspectivas de investigación en las sociedades medievales hispánicas, pp 185–202. http://www.rmoa.unina.it/id/eprint/143

  3. Chazelles CAD (1993) Savoir-faire indigènes et influences coloniales dans l'architecture de terre antique de l'extrême-occident (Afrique du Nord, Espagne, France méridionale). In: Conferência internacional sobre o estudo e conservaçao da arquitectura de terra (7a). Silves (Portugal), 24 a 29 de Outubro 1993, pp 159–165

    Google Scholar 

  4. Costa C, Cerqueira Â, Rocha F, Velosa A (2019) The sustainability of adobe construction: past to future. Int J Archit Heritage 13(5):639–647. https://doi.org/10.1080/15583058.2018.1459954

    Article  Google Scholar 

  5. Cuenca-Moyano GM, Martín-Morales M, Valverde-Palacios I, Valverde-Espinosa I, Zamorano M (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr Build Mater 70:71–79. https://doi.org/10.1016/j.conbuildmat.2014.07.098

    Article  Google Scholar 

  6. European standard EN 413-1:2011. Masonry cement—Part 1: composition, specifications and conformity criteria

    Google Scholar 

  7. European standard EN 459-1:2016. Building lime—Part 1: definitions, specifications and conformity criteria

    Google Scholar 

  8. European standard EN 13295:2005. Products and systems for the protection and repair of concrete structures—test methods—determination of resistance to carbonation

    Google Scholar 

  9. European standard EN ISO 17892-1:2014. Geotechnical investigation and testing—laboratory testing of soil—Part 1: determination of water content

    Google Scholar 

  10. European standard EN ISO 17892-4:2016. Geotechnical investigation and testing—laboratory testing of soil—Part 4: determination of particle size distribution

    Google Scholar 

  11. European standard EN ISO 17892-7:2017. Geotechnical investigation and testing—laboratory testing of soil—Part 7: unconfined compression test

    Google Scholar 

  12. European standard EN ISO 17892-12:2018. Geotechnical investigation and testing—laboratory testing of soil—Part 12: determination of liquid and plastic limits

    Google Scholar 

  13. Flores R (2005) A construção em taipa de pilão no Brasil: as Casas Bandeiristas de São Paulo. Arquitectura de Terra Em Portugal, pp 92–95

    Google Scholar 

  14. Fuentes-García R (2010) Construcciones de tierra. El tapial. Nuevo sistema para construcción y restauración mediante la técnica de “Tierra Proyectada”. Tesis Doctoral. Granada, Spain

    Google Scholar 

  15. Fuentes-García R, Valverde-Palacios I, Valverde-Espinosa I (2015) A new procedure to adapt any type of soil for the consolidation and construction of earthen structures: projected earth system. Mater Constr 65(319):e063–e063

    Article  Google Scholar 

  16. Guerrero Baca LF (2007) Arquitectura en tierra. Hacia la recuperación de una cultura constructiva. Apuntes: Revista de estudios sobre patrimonio cultural. J Cultural Heritage Stud 20(2): 182–201. ISSN 2011-9003. (Ejemplar dedicado a: Arquitectura en tierra)

    Google Scholar 

  17. Houben H, Guillaud H (2001) Earth construction. A comprehensive guide. itdg Publishing, London

    Google Scholar 

  18. Keefe L (2012) Earth building: methods and materials, repair and conservation. Taylor and Francis, London

    Google Scholar 

  19. Marchiori C (2015) Arquitectura en tierra de la prehistoria y protohistoria en el Próximo Oriente. Estudio arqueométrico del adobe en los yacimientos de Tell Halula, Yumuktepe y Tell Tuqan. Universitat Autònoma de Barcelona

    Google Scholar 

  20. Minke G (2001) Manual de construcción para viviendas antisísmicas de tierra. Forschungslabor für Experimentelles Bauen Universidad de Kassel

    Google Scholar 

  21. Moor M, Heathcote K (2002) Earth building in Australia—durability research. In: Proceedings of Modern Earth Building, Berlin, Germany, 19–21 April 2002, pp 129–139

    Google Scholar 

  22. Puccioni S, Lyra CC (1993) O uso da Taipa-de-Pilao em construcoes Luso-Brasileiras. In: Conferência internacional sobre o estudo e conservaçao da arquitectura de terra (7a). Silves (Portugal), 24 a 29 de Outubro 1993, pp 296–298

    Google Scholar 

  23. Sanchez-Roldan Z, Martin-Morales M, Valverde-Espinosa I, Zamorano M (2020) Technical feasibility of using recycled aggregates to produce eco-friendly urban furniture. Constr Build Mater 250:118890

    Google Scholar 

  24. Spanish standard UNE 103200:2021. Determination of the carbonate content of a soil

    Google Scholar 

  25. Spanish standard UNE 103202:2019. Qualitative determination of soluble sulphates (in water) content in a soil

    Google Scholar 

  26. Spanish standard UNE 103204:2019. Organic matter content of a soil by the potassium permanganate method

    Google Scholar 

  27. Steingass P (2004) New chances for modern earth building. In: Actas del II Seminario Iberoamericano de construcción con tierra [Recurso electrónico]: Escuela Técnica Superior de Arquitectura de Madrid, 18 y 19 de septiembre de 2003. Mairea Libros, pp 417–425

    Google Scholar 

  28. Valverde-Palacios I, Fuentes R, Valverde-Espinosa I, Martín-Morales M, Del Moral Ávila C, Delgado Méndez L, Santos J, Canals Peres E (2012) Projected Earth System®. Aplicación de esta técnica a la construcción de viviendas sostenibles y ecológicas: Ecodome. XI Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación (El Patrimonio Ibérico). Cascais (Portugal). Libro de actas digital

    Google Scholar 

  29. Zhang PC, Luo K, Liao WB (2012) Study on the material and the structure of Earth building in Fujian. In: Advanced materials research. Trans Tech Publications Ltd., vol 368, pp 3567–3570

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by Research Group TEP942 of the Andalusian Research Plan, funded by the Andalusian Regional Government in Spain and by the Department of Building Construction of Granada University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Valverde-Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valverde-Palacios, I., Fuentes-García, R., Cervilla-Maldonado, A., Valverde-Espinosa, I. (2022). Earth as a Sustainable Construction Material. Characterization of Different Mixtures and Implementation Using the Projected Earth System. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics