Skip to main content

Polymeric Nanoparticles and Nanocomposites as Antibacterial Agents

  • Chapter
  • First Online:
Alternatives to Antibiotics

Abstract

The concern of antibiotic resistance is alarming as more bacterial strains acquire resistance against multiple drugs and therefore, infections caused by them are becoming further challenging to treat. According to the Centers for Disease Control and Prevention (CDCP) reports, more than 2.8 million cases of infections due to antibiotic resistance are recorded each year in the United States alone resulting in deaths of about 35,000 people (CDCP 2019). These resistant pathogens besides being a menace in hospital settings, causing nosocomial infections and failure of medical equipment, also pose a threat in food and water industries. Thus, there is an immediate need to address this problem and come up with innovative solutions like fabrication of novel materials or antibacterial agents against which acquiring of resistance can be eradicated. The use of polymeric nanoparticles and creation of polymeric nanocomposites (PNCs) to tackle the problem of antibacterial drug resistance seems like a promising countermeasure which can reduce adhesion and prevent the colonization of bacteria, impede formation of biofilm and kill them. Polymeric nanocomposites are multiphasic composites formed by the amalgamation of two different materials—nanoparticles (NPs) and polymers which results in the creation of a novel substance whose at least one dimension falls in the nanoscale, possessing the intrinsic properties of both the substances along with some new characteristics acquired owing to their synergistic affect (Tamayo et al., Mater Sci Eng C 69:1391–1409, 2016). In this chapter we have discussed about the various polymeric nanoparticles and polymeric composites which have been successfully tested against the different bacterial strains. Also, we have explained the different polymeric nanoparticles and nanocomposites’ synthesis methods and their mechanism of action against the microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

CMNC:

Ceramic matrix nanocomposites

CNT:

Carbon nanotube

DLS:

Dynamic light scattering

PEG:

Polyethylene glycol

PGA:

Polyglycol acid

PMMA:

Polymethyl methacrylate

PMNC:

Polymer matrix nanocomposites

XPS:

X-ray photoelectron spectroscopy

References

  • Abhilash M (2010) Potential applications of nanoparticles. Int J Pharm Bio Sci 1(1):1–12

    Google Scholar 

  • Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ (2011) Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 12:4872–4884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed M, Narain R (2013) Progress of RAFT based polymers in gene delivery. Prog Polym Sci 38:767–790

    Article  CAS  Google Scholar 

  • Akhavan O (2009) Lasting antibacterial activities of ag–TiO2/Ag/A-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336:117–124

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Khan I, Khan S, Sohail M, Ahmed R, Rehman A, Ansari MS, Morsy MA (2017) Electrocatalytic performance of Ni@ Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J Electroanal Chem 795:17–25

    Article  CAS  Google Scholar 

  • Alqudami A, Annapoorni S (2007) Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2:5–13

    Article  CAS  Google Scholar 

  • Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  CAS  PubMed  Google Scholar 

  • Augustinea R, Hasana A (2020) Multimodal applications of phytonanoparticles. Phyton 195–219

    Google Scholar 

  • Babu PJ, Doble M (2018) Albumin capped carbon-gold (C-au) nanocomposite as an optical sensor for the detection of arsenic (III). Opt Mater 84:339–344

    Article  CAS  Google Scholar 

  • Babu PJ, Sharma P, Borthakur BB, Das RK, Nahar P, Bora U (2010) Synthesis of gold nanoparticles using Mentha arvensis leaf extract. Int J Green Nanotechnol Phys Chem 2(2):62–P68

    Article  Google Scholar 

  • Babu PJ, Sharma P, Kalita MC, Bora U (2011a) Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract. Front Mater Sci 5(4):379–387

    Article  Google Scholar 

  • Babu PJ, Das RK, Kumar A, Bora U (2011b) Microwave-mediated synthesis of gold nanoparticles using coconut water. Int J Green Nanotechnol 3(1):13–21

    Article  CAS  Google Scholar 

  • Babu PJ, Saranya S, Sharma P, Tamuli R, Bora U (2012a) Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites. Front Mater Sci 6(3):236–249

    Article  Google Scholar 

  • Babu PJ, Sharma P, Sibyala S, Tamuli R, Bora U (2012b) Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int Nano Lett 2(1):1–9

    Article  Google Scholar 

  • Babu PJ, Sharma P, Saranya S, Bora U (2013a) Synthesis of gold nanoparticles using ethonolic leaf extract of Bacopa monnieri and UV irradiation. Mater Lett 93:431–434

    Article  CAS  Google Scholar 

  • Babu PJ, Sharma P, Saranya S, Tamuli R, Bora U (2013b) Green synthesis and characterization of biocompatible gold nanoparticles using Solanum indicum fruits. Nanomater Nanotechnol 3:1–7

    Article  CAS  Google Scholar 

  • Babu PJ, Raichur AM, Doble M (2018a) Synthesis and characterization of biocompatible carbon-gold (C-au) nanocomposites and their biomedical applications as an optical sensor for creatinine detection and cellular imaging. Sens Actuat B Chem 258:1267–1278

    Article  CAS  Google Scholar 

  • Babu PJ, Doble M, Raichur AM (2018b) Silver oxide nanoparticles embedded silk fibroin spuns: microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity. J Colloid Interface Sci 513:62–71

    Article  CAS  PubMed  Google Scholar 

  • Babu PJ, Saranya S, Raichur AM, Doble M (2020) Design of photoluminescence point-of-care membrane strip for the detection of dopamine. Mater Lett 277:128316–128321

    Article  CAS  Google Scholar 

  • Babu PJ, Saranya S, Singh YD, Venkataswamy M, Raichur AM, Doble M (2021) Photoluminescence carbon nano dots for the conductivity based optical sensing of dopamine and bioimaging applications. Opt Mater 117:111120–111129

    Article  CAS  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Banerjee AN, Krishna R, Das B (2008) Size controlled deposition of cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl Phys 90:299–303

    Article  CAS  Google Scholar 

  • Bardajee GR, Hooshyar Z, Rezanezhad H (2012) A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. J Inorg Biochem 117:367–373

    Article  CAS  PubMed  Google Scholar 

  • Barkade SS, Naik JB, Sonawane SH (2011) Ultrasound assisted miniemulsion synthesis of polyaniline/ag nanocomposite and its application for ethanol vapor sensing. Colloids Surf A Physicochem Eng Asp 378:94–98

    Article  CAS  Google Scholar 

  • Becerra A, Rodríguez-Llamazares S, Carrasco C, Díaz-Visurraga J, Riffo C, Mondaca MA (2013) Preparation of poly (vinyl chloride)/copper nanocomposite films with reduced bacterial adhesion. High Perform Polym 25:51–60

    Article  CAS  Google Scholar 

  • Becher PF (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74:255–269

    Article  CAS  Google Scholar 

  • Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI (2008) Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 29:4157–4163

    Article  CAS  PubMed  Google Scholar 

  • Bikiaris DN, Triantafyllidis KS (2013) HDPE/cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Mater Lett 93:1–4

    Article  CAS  Google Scholar 

  • Brinkhuis RP, Rutjes FP, van Hest JC (2011) Polymeric vesicles in biomedical applications. Polym Chem 2:1449–1462

    Article  CAS  Google Scholar 

  • Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  • Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH (2014) Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 39:1614–1643

    Article  CAS  Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  • CDC (2019) Antibiotic resistance threats in the United States. Department of Health and Human Services, Centers for Disease Control and Prevention, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Chae DW, Kim BC (2005) Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym Adv Technol 16:846–850

    Article  CAS  Google Scholar 

  • Chen G, Lu J, Lam C, Yu Y (2014) A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 139:5793–5799

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  PubMed  Google Scholar 

  • Das RK, Gogoi N, Babu PJ, Sharma P, Mahanta BU (2012) The synthesis of gold nanoparticles using Amaranthus spinosus leaf extract and study of their optical properties. Adv Mater Phys Chem 2(4):1–7

    Article  Google Scholar 

  • Dimitrijevic NM, Saponjic ZV, Rabatic BM, Rajh T (2005) Assembly and charge transfer in hybrid TiO2 architectures using biotin−avidin as a connector. J Am Chem Soc 127:1344–1345

    Article  CAS  PubMed  Google Scholar 

  • Doyle ME, Glass KA (2010) Sodium reduction and its effect on food safety, food quality, and human health. Comprehen Rev Food Sci Food Saf 9(1):44–56

    Article  CAS  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces 94:143–150

    Article  CAS  PubMed  Google Scholar 

  • Edmundson M, Thanh NT, Song B (2013) Nanoparticles based stem cell tracking in regenerative medicine. Theranostics 3:573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23:763–772

    Article  CAS  Google Scholar 

  • Galletti AMR, Antonetti C, Marracci M, Piccinelli F, Tellini B (2013) Novel microwave-synthesis of cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl Surf Sci 280:610–618

    Article  CAS  Google Scholar 

  • Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:532–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301

    Article  PubMed  CAS  Google Scholar 

  • Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7:846–855

    Article  CAS  Google Scholar 

  • Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  CAS  PubMed  Google Scholar 

  • Giasuddin ASM, Jhuma KA, Haq AM (2012) Use of gold nanoparticles in diagnostics, surgery and medicine: a review. Bangladesh J Med Biochem 5:56–60

    Article  Google Scholar 

  • Gowri S, Almeida L, Amorim T, Carneiro N, Pedro Souto A, Fátima Esteves M (2010) Polymer nanocomposites for multifunctional finishing of textiles—a review. Text Res J 80:1290–1306

    Article  CAS  Google Scholar 

  • Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A Physicochem Eng Asp 297:63–70

    Article  CAS  Google Scholar 

  • Gutierrez RMP, Mendez JVM, Vazquez IA (2017) A novel approach to the oral delivery of bionanostructures for systemic disease. In: Nanostructures for oral medicine, pp 27–59

    Chapter  Google Scholar 

  • Hallaj-Nezhadi S, Hassan M (2015) Nanoliposome-based antibacterial drug delivery. Drug Deliv 22:581–589

    Article  CAS  PubMed  Google Scholar 

  • Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341

    Article  CAS  PubMed  Google Scholar 

  • Harmer MP, Chan HM, Miller GA (1992) Unique opportunities for microstructural engineering with duplex and laminar ceramic composites. J Am Ceram Soc 75:1715–1728

    Article  CAS  Google Scholar 

  • Hinde E, Thammasiraphop K, Duong HT, Yeow J, Karagoz B, Boyer C, Gooding JJ, Gaus K (2017) Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol 12:81–89

    Article  CAS  PubMed  Google Scholar 

  • Hsueh PR (2010) New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among Enterobacteriaceae. J Formos Med Assoc 109:685–687

    Article  CAS  PubMed  Google Scholar 

  • Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358

    Article  CAS  Google Scholar 

  • Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14:131–144

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman R (2009) Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr Sci:1475–1484

    Google Scholar 

  • Jiang Y, Liu D, Cho M, Lee SS, Zhang F, Biswas P, Fortner JD (2016) In situ photocatalytic synthesis of ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ Sci Technol 50:2514–2521

    Article  CAS  PubMed  Google Scholar 

  • Jovanović Ž, Krklješ A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, Kačarević-Popović Z (2011) Synthesis and characterization of silver/poly (N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215

    Article  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy S, Sorna RP (2015) Review articles: methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Kaur R, Bhardwaj SK, Chandna S, Kim KH, Bhaumik J (2021) Lignin-based metal oxide nanocomposites for UV protection applications: a review. J Clean Prod 317:128300

    Article  CAS  Google Scholar 

  • Khalid H, Shamaila S, Zafar N, Sharif R, Nazir J, Rafique M, Ghani S, Saba H (2016) Antibacterial behavior of laser-ablated copper nanoparticles. Acta Metall Sin 29:748–754

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114

    Article  CAS  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366

    Article  CAS  Google Scholar 

  • Koch C (1997) Synthesis of nanostructured by mechanical milling: problems and opportunities. Nano Struct Mater 9:3–22

    Article  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today 5:165–168

    Article  Google Scholar 

  • Kumar V, Kim KH, Park JW, Hong J, Kumar S (2017) Graphene and its nanocomposites as a platform for environmental applications. Chem Eng J 315:210–232

    Article  CAS  Google Scholar 

  • Kutvonen A, Rossi G, Puisto SR, Rostedt NK, Ala-Nissila T (2012) Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. J Chem Phys 137:214901

    Article  PubMed  CAS  Google Scholar 

  • Lange FF (1973) Effect of microstructure on strength of Si3N4-SiC composite system. J Am Ceram Soc 56:445–450

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu S, Zhang L, Wang W, Cao D (2011a) Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys Chem Chem Phys 13:518–529

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011b) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27:7926–7933

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li M, Chen G (2013) A new type of raspberry-like polymer composite sub-microspheres with tunable gold nanoparticles coverage and their enhanced catalytic properties. J Mater Chem A 1:930–937

    Article  CAS  Google Scholar 

  • Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Manjula P, Boppella R, Manorama SV (2012) A facile and green approach for the controlled synthesis of porous SnO2 Nanospheres: application as an efficient photocatalyst and an excellent gas sensing. ACS Appl Mater Interfaces 4:6252–6260

    Article  CAS  PubMed  Google Scholar 

  • Mansha M, Khan I, Ullah N, Qurashi A (2017) Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int J Hydrogen Energy 42:10952–10961

    Article  CAS  Google Scholar 

  • Marosföi B, Matko S, Marosi PAG (2006) Fire retarded polymer nanocomposites. Curr Appl Phys 6:259–261

    Article  Google Scholar 

  • Mei L, Lu Z, Zhang X, Li C, Jia Y (2014) Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl Mater Interfaces 6:15813–15821

    Article  CAS  PubMed  Google Scholar 

  • Merino D, Gutiérrez TJ, Mansilla AY, Casalongué CA, Alvarez VA (2018) Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: study on their interactions with water and light. ACS Sustain Chem Eng 6:15662–15672

    Article  CAS  Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28:4870–4879

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi D, Scalia M, Nicolosi VM, Pignatello R (2010) Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against gram-negative bacteria. Int J Antimicrob Agents 35:553–558

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan PVA, Sreekumar KP, Thiyagarajan TK, Satpute RU, Bhanumurth K, Sengupta P, Dey GK, Warrier KGK (2006) Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80:1252–1255

    Article  CAS  Google Scholar 

  • Palza H, Gutiérrez S, Delgado K, Salazar O, Fuenzalida V, Avila JI, Figueroa G, Quijada R (2010) Toward tailor-made biocide materials based on poly (propylene)/copper nanoparticles. Macromol Rapid Commun 31:563–567

    Article  CAS  PubMed  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Perez-Tijerina E, Pinilla MG, Mejía-Rosales S, Ortiz-Méndez U, Torres A, Jose-Yacaman M (2008) Highly size- controlled synthesis of au/Pd nanoparticles by inert-gas condensation. Faraday Discuss 138:353–362

    Article  CAS  PubMed  Google Scholar 

  • Peymanfar R, Norouzi F, Javanshir S (2019) Preparation and characterization of one-pot PANi/Fe/Fe3O4/Fe2O3 nanocomposite and investigation of its microwave, magnetic and optical performance. Synth Met 252:40–49

    Article  CAS  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:55S–64S

    Article  PubMed  Google Scholar 

  • Popa M, Pradell T, Crespo D, Calderón-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A Physicochem Eng Asp 303:184–190

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10

    Article  Google Scholar 

  • Prakash A, McCormick AV, Zachariah MR (2004) Aero-Sol−Gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem Mater 16(8):1466–1471

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Ramesh S (2013) Sol-gel synthesis and characterization of nanoparticles. J Nano Sci 12:1–9

    Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Rawat MK, Jain A, Singh S (2011) Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci 100:2366–2378

    Article  CAS  PubMed  Google Scholar 

  • Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyzioł A (2015) Development of noncytotoxic chitosan–gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 7:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Robin A, Anwarul H (2020) Multimodal applications of phytonanoparticles. In: Phytonanotechnology, challenges and prospects. Elsevier, Amsterdam, pp 195–219

    Google Scholar 

  • Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM (2017) Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol 8(1):1–25

    Article  CAS  Google Scholar 

  • Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M (2012) Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 7:111–120

    Article  CAS  PubMed  Google Scholar 

  • Shahin M, Safaei-Nikouei N, Lavasanifar A (2014) Polymeric micelles for pH-responsive delivery of cisplatin. J Drug Target 22:629–637

    Article  CAS  PubMed  Google Scholar 

  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6:71

    Article  PubMed Central  CAS  Google Scholar 

  • Sharma P, Babu PJ, Bora U (2012) Sapindus mukorossi aqueous fruit extract as reducing, capping and dispersing agents in synthesis of gold nanoparticles. Micro Nano Lett 7(12):1296–1299

    Article  CAS  Google Scholar 

  • Shimoda K, Hinoki T, Kohyama A (2010) Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos Sci Technol 70(2):387–392

    Article  CAS  Google Scholar 

  • Shin J, Kim Y, Lee K, Lim YM, Nho YC (2008) Significant effects of sodium acetate, an impurity present in poly (vinyl alcohol) solution on the radiolytic formation of silver nanoparticle. Radiat Phys Chem 77:871–876

    Article  CAS  Google Scholar 

  • Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  • Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407

    Article  CAS  Google Scholar 

  • Siwach OP, Sen P (2008) Synthesis and study of fluorescence properties of Cu nanoparticles. J Nanopart Res 10:107–114

    Article  CAS  Google Scholar 

  • Su SJ, Kuramoto N (2000) Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth Met 114:147–153

    Article  CAS  Google Scholar 

  • Sulistio A, Gurr PA, Blencowe A, Qiao GG (2012) Peptide-based star polymers: the rising star in functional polymers. Aust J Chem 65:978–984

    Article  CAS  Google Scholar 

  • Sun Y, An C (2011) Shaped gold and silver nanoparticles. Front Mater Sci 5(1):1–24

    Article  Google Scholar 

  • Tamayo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Vidya C, Hiremath S, Chandraprabha MN, Antonyraj ML, Gopal IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int J Cur Eng Tech Spec Iss 1:118–120

    Google Scholar 

  • Viswanath B, Ravishankar N (2006) Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scr Mater 55:863–866

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waschinski CJ, Herdes V, Schueler F, Tiller JC (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156

    Article  CAS  PubMed  Google Scholar 

  • Watarai S, Iwase T, Tajima T, Yuba E, Kono K, Sekiya Y (2014) Application of pH-sensitive fusogenic polymer- modified liposomes for development of mucosal vaccines. Vet Immunol Immunopathol 158:62–72

    Article  CAS  PubMed  Google Scholar 

  • Weickmann H, Tiller JC, Thomann R, Mülhaupt R (2005) Metallized organoclays as new intermediates for aqueous nanohybrid dispersions, nanohybrid catalysts and antimicrobial polymer hybrid nanocomposites. Macromol Mater Eng 290:875–883

    Article  CAS  Google Scholar 

  • Wiltshire JT, Qiao GG (2007) Recent advances in star polymer design: degradability and the potential for drug delivery. Aust J Chem 60:699–705

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Yang B, Chen S, Du J (2017) Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog Polym Sci 64:1–22

    Article  CAS  Google Scholar 

  • Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35:179–186

    Article  CAS  Google Scholar 

  • Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    Article  CAS  Google Scholar 

  • Zafar N, Shamaila S, Nazir J, Sharif R, Rafique MS, Ul-Hasan J, Ammara S, Khalid H (2016) Antibacterial action of chemically synthesized and laser generated silver nanoparticles against human pathogenic bacteria. J Mater Sci echnol 32:721–728

    CAS  Google Scholar 

  • Zhang Q, Su L, Collins J, Chen G, Wallis R, Mitchell DA, Haddleton DM, Becer CR (2014) Dendritic cell lectin- targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. J Am Chem Soc 136:4325–4332

    Article  CAS  PubMed  Google Scholar 

  • Zhong T, Oporto GS, Jaczynski J, Tesfai AT, Armstrong J (2013) Antimicrobial properties of the hybrid copper nanoparticles-carboxymethyl cellulose. Wood Fiber Sci 45:215–222

    CAS  Google Scholar 

  • Zhu Y, Yang B, Chen S, Du J (2017) Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog Polym Sci 64:1–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Punuri Jayasekhar Babu (PJB) would like to acknowledge that the current research is funded by the SERB, Government of India, vide project sanction no: SRG/2020/002283.

Conflict of Interest

Authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tirkey, A., Ningthoujam, R., Chanu, B.L., Singh, Y.D., Heisnam, P., Babu, P.J. (2022). Polymeric Nanoparticles and Nanocomposites as Antibacterial Agents. In: Saha, T., Deb Adhikari, M., Tiwary, B.K. (eds) Alternatives to Antibiotics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1854-4_12

Download citation

Publish with us

Policies and ethics