Skip to main content

Passive Sampling Techniques for Monitoring of Pharmaceuticals and Personal Care Products in Water Matrix: Trends from 2016 to 2020

  • Chapter
  • First Online:
Impact of COVID-19 on Emerging Contaminants

Abstract

Monitoring the concentration of pharmaceutical and personal care products (PPCPs) in the water system is essential, particularly in estimating the risk associated with their toxicity to the aquatic organism and humans. However, the significant challenge associated with using active sampling techniques (discrete and continuous) has been its complex procedure, high cost of operation, and lack of sensitivity and reliability, particularly in aquatic environments with a highly dynamic concentration of PPCPs. Passive sampling techniques have recently received increasing attention as an alternative tool in monitoring PPCPs as it offers significant advantages compared to the active sampling techniques. The present chapter summarizes the current literature on applying passive sampling techniques in monitoring PPCPs in an aqueous matrix from 2016 to 2020. More importantly, this review focuses on the most commonly applied passive sampling devices for monitoring of PPCPs in an aquatic environment, such as polar organic chemical integrative sampler (POCIS), a diffusive gradient in thin-film (DGT), and Chemcatcher® with emphasis given to the theory, main components of passive sampling devices, methods of calibration, and their application. Finally, the analytical performance (i.e., deployment time, and the measured concentration of the analytes) of each passive sampling technique in monitoring PPCPs is examined and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahkola H, Tuominen S, Karlsson S, Perkola N, Huttula T, Saraperä S, Artimo A, Korpiharju T, Äystö L, Fjäder P, Assmuth T, Rosendahl K, Nysten T (2017) Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production. Environ Sci Pollut Res 24:26778–26791

    Article  CAS  Google Scholar 

  • Allan IJ, Knutsson J, Guigues N, Mills GA, Fouillac AM, Greenwood R (2007) Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. J Environ Monit 9:672–681

    Article  CAS  PubMed  Google Scholar 

  • Allan IJ, Knutsson J, Guigues N, Mills GA, Fouillac AM, Greenwood R (2008) Chemcatcher(R) and DGT passive sampling devices for regulatory monitoring of trace metals in surface water. J Environ Monit 10:821–829

    Article  CAS  PubMed  Google Scholar 

  • Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddrad JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Averós JC, Llorens JP, Uribe-Kaffure R (2020) Numerical simulation of non-linear models of reaction-diffusion for a DGT sensor. Algorithms 13:98

    Article  MathSciNet  Google Scholar 

  • Baz-Lomba JA, Harman C, Reid M, Thomas KV (2017) Passive sampling of wastewater as a tool for the long-term monitoring of community exposure: Illicit and prescription drug trends as a proof of concept. Water Res 121:221–230

    Article  CAS  PubMed  Google Scholar 

  • Beni NN, Snow DD, Berry ED, Mittelstet AR, Messer TL, Bartelt-Hunt S (2020) Measuring the occurrence of antibiotics in surface water adjacent to cattle grazing areas using passive samplers. Sci Total Environ 726:138296

    Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Shi X, Yu G, Huang J, Wang B (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg Contam 2:145–147

    Article  Google Scholar 

  • Buchberger WW (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218:603–618

    Article  CAS  PubMed  Google Scholar 

  • Buzier R, Guibal R, Lissalde S, Guibaud G (2019) Limitation of flow effect on passive sampling accuracy using POCIS with the PRC approach or o-DGT: a pilot-scale evaluation for pharmaceutical compounds. Chemosphere 222:628–636

    Article  CAS  PubMed  ADS  Google Scholar 

  • Carpinteiro I, Schopfer A, Estoppey N, Fong C, Grandjean D, de Alencastro LF (2016) Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers. Anal Bioanal Chem 408:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Challis JK, Almirall XO, Helm PA, Wong CS (2020) Performance of the organic-diffusive gradients in thin-films passive sampler for measurement of target and suspect wastewater contaminants. Environ Pollut 261:114092

    Google Scholar 

  • Challis JK, Hanson ML, Wong CS (2016) Development and calibration of an organic-diffusive gradients in thin films aquatic passive sampler for a diverse suite of polar organic contaminants. Anal Chem 88:10583–10591

    Article  CAS  PubMed  Google Scholar 

  • Challis JK, Stroski KM, Luong KH, Hanson ML, Wong CS (2018) Field evaluation and in situ stress testing of the organic-diffusive gradients in thin-films passive sampler. Environ Sci Technol 52:12573–12582

    Article  CAS  PubMed  ADS  Google Scholar 

  • Charriau A, Lissalde S, Poulier G, Mazzella N, Buzier R, Guibaud G (2016) Overview of the Chemcatcher(R) for the passive sampling of various pollutants in aquatic environments Part A: principles, calibration, preparation and analysis of the sampler. Talanta 148:556–571

    Article  CAS  PubMed  Google Scholar 

  • Chen C-E, Liu Y-S, Dunn R, Zhao J-L, Jones KC, Zhang H, Ying G-G, Sweetman AJ (2020) A year-long passive sampling of phenolic endocrine disrupting chemicals in the East River, South China. Environ Int 143:105936

    Google Scholar 

  • Chen W, Li Y, Chen C-E, Sweetman AJ, Zhang H, Jones KC (2017) DGT passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters. Environ Sci Technol 51:13274–13281

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen W, Pan S, Cheng H, Sweetman AJ, Zhang H, Jones KC (2018) Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res 137:211–219

    Article  CAS  PubMed  Google Scholar 

  • Chimuka L, Cukrowska E (2006) The role of passive samplers in the monitoring of aquatic ecosystems and occupational hygiene pollution. LC GC Eur 19:402–410

    CAS  Google Scholar 

  • Chimuka L, Cukrowska E, Tutu H (2008) Monitoring of aqueous environment using passive samplers. Open Anal Chem J 2:1–9

    Article  CAS  Google Scholar 

  • Coes AL, Paretti NV, Foreman WT, Iverson JL, Alvarez DA (2014) Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods. Sci Total Environ 473:731–741

    Article  PubMed  ADS  CAS  Google Scholar 

  • Criquet J, Dumoulin D, Howsam M, Mondamert L, Goossens J-F, Prygiel J, Billon G (2017) Comparison of POCIS passive samplers vs. composite water sampling: a case study. Sci Total Environ 609:982–991

    Article  CAS  PubMed  ADS  Google Scholar 

  • Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548

    Article  CAS  ADS  Google Scholar 

  • Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA (2021) Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ Pollut 273:116515

    Google Scholar 

  • Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16

    Article  Google Scholar 

  • Fang Z, Li K, Li Y, Zhang H, Jones KC, Liu X, Liu S, Ma LQ, Luo J (2019) Development and application of the diffusive gradients in thin-films technique for measuring psychiatric pharmaceuticals in natural waters. Environ Sci Technol 53:11223–11231

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fu Q, Malchi T, Carter LJ, Li H, Gan J, Chefetz B (2019) Pharmaceutical and personal care products: from wastewater treatment into agro-food systems. Environ Sci Technol 53:14083–14090

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gorecki T, Namiesnik J (2002) Passive sampling. Trends Anal Chem 21:276–291

    Article  CAS  Google Scholar 

  • Gravell A, Fones GR, Greenwood R, Mills GA (2020) Detection of pharmaceuticals in wastewater effluents—a comparison of the performance of Chemcatcher® and polar organic compound integrative sampler. Environ Sci Pollut Res 27:27995–28005

    Article  CAS  Google Scholar 

  • Guibal R, Buzier R, Lissalde S, Guibaud G (2019) Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: an overview of o-DGT passive samplers. Sci Total Environ 693:133537

    Google Scholar 

  • Guibal R, Lissalde S, Brizard Y, Guibaud G (2018) Semi-continuous pharmaceutical and human tracer monitoring by POCIS sampling at the watershed-scale in an agricultural rural headwater river. J Hazard Mater 360:106–114

    Article  CAS  PubMed  Google Scholar 

  • Guibal R, Lissalde S, Guibaud G (2020) Experimental estimation of 44 pharmaceutical polar organic chemical integrative sampler sampling rates in an artificial river under various flow conditions. Environ Toxicol Chem 39:1186–1195

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Zhang T, Hou S, Lv J, Zhang Y, Wu F, Hua Z, Meng W, Zhang H, Xu J (2017) Investigation and application of a new passive sampling technique for in situ monitoring of illicit drugs in waste waters and rivers. Environ Sci Technol 51:9101–9108

    Article  CAS  PubMed  ADS  Google Scholar 

  • Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of polar organic chemical integrative sampler—a critical review. Environ Toxicol Chem 31:2724–2738

    Article  CAS  PubMed  Google Scholar 

  • Hoyett Z (2017) Pharmaceuticals and personal care products: risks, challenges, and solutions. Risk Assessment. IntechOpen

    Google Scholar 

  • Jorgenson ZG, Thomas LM, Elliott SM, Cavallin JE, Randolph EC, Choy SJ, Alvarez DA, Banda JA, Gefell DJ, Lee KE, Furlong ET, Schoenfuss HL (2018) Contaminants of emerging concern presence and adverse effects in fish: a case study in the Laurentian Great Lakes. Environ Pollut 236:718–733

    Article  CAS  PubMed  Google Scholar 

  • Keerthanan S, Jayasinghe C, Biswas JK, Vithanage M (2021) Pharmaceutical and personal care products (PPCPs) in the environment: plant uptake, translocation, bioaccumulation, and human health risks. Crit Rev Environ Sci Technol 51:1221–1258

    Article  CAS  Google Scholar 

  • Kim H, Homan M (2020) Evaluation of pharmaceuticals and personal care products (PPCPs) in drinking water originating from Lake Erie. J Great Lakes Res 46:1321–1330

    Article  CAS  Google Scholar 

  • Kingston JK, Greenwood R, Mills GA, Morrison GM, Persson LB (2000) Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. J Environ Monit 2:487–495

    Article  CAS  PubMed  Google Scholar 

  • Kot-Wasik A, Zabiegala B, Urbanowicz M, Dominiak E, Wasik A, Namiesnik J (2007) Advances in passive sampling in environmental studies. Anal Chim Acta 602:141–163

    Article  CAS  PubMed  Google Scholar 

  • Kot A, Zabiegala B, Namiesnik J (2000) Passive sampling for long-term monitoring of organic pollutants in water. Trends Anal Chem 19:446–459

    Article  CAS  Google Scholar 

  • Křesinová Z, Petrů K, Lhotský O, Rodsand T, Cajthaml T (2016) Passive sampling of pharmaceuticals and personal care products in aquatic environments. Eur J Env Sci 6:43–56

    Google Scholar 

  • Kumar M, Mazumder P, Mohapatra S, Thakur AK, Dhangar K, Taki K, Kuroda K (2020) A chronicle of SARS-CoV-2: seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. J Hazard Mater 124043

    Google Scholar 

  • Kuswandi B, Nitti F, Almeida MIGS, Kolev SD (2020) Water monitoring using polymer inclusion membranes: a review. Environ Chem Lett 18:129–150

    Article  CAS  Google Scholar 

  • Li Y, Yao C, Zha D, Yang W, Lu G (2018) Selection of performance reference compound (PRC) for passive sampling of pharmaceutical residues in an effluent dominated river. Chemosphere 211:884–892

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS (2018) Pharmaceuticals in processing of municipal sewage sludge studied by grab and passive sampling. Water Qual Res J 53:14–23

    Article  CAS  Google Scholar 

  • Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS, Koistinen J, Lahti K, Vahtera H, Herve SH (2016) Suitability of passive sampling for the monitoring of pharmaceuticals in Finnish surface waters. Environ Sci Pollut Res 23:18043–18054

    Article  CAS  Google Scholar 

  • Madikizela LM, Ncube S, Tutu H, Richards H, Newman B, Ndungu K, Chimuka L (2020) Pharmaceuticals and their metabolites in the marine environment: sources, analytical methods and occurrence. Trends Environ Anal Chem 28:e00104

    Google Scholar 

  • Madrid Y, Zayas ZP (2007) Water sampling: traditional methods and new approaches in water sampling strategy. Trends Anal Chem 26:293–299

    Article  CAS  Google Scholar 

  • Martínez Bueno MJ, Herrera S, Munaron D, Boillot C, Fenet H, Chiron S, Gómez E (2016) POCIS passive samplers as a monitoring tool for pharmaceutical residues and their transformation products in marine environment. Environ Sci Pollut Res 23:5019–5029

    Article  CAS  Google Scholar 

  • Mayer P, Tolls J, Hermens JLM, Mckay D (2003) Equilibrium sampling devices. Environ Sci Technol 37:185A-191A

    Article  CAS  ADS  Google Scholar 

  • Męczykowska H, Kobylis P, Stepnowski P, Caban M (2017) Calibration of passive samplers for the monitoring of pharmaceuticals in water-sampling rate variation. Crit Rev Anal Chem 47:204–222

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Liu W, Liu X, Zhang J, Peng M, Zhang T (2021) A review on analytical methods for pharmaceutical and personal care products and their transformation products. J Environ Sci 101:260–281

    Article  CAS  Google Scholar 

  • Menon NG, Mohapatra S, Padhye LP, Tatiparti SSV, Mukherji S (2020) Review on occurrence and toxicity of pharmaceutical contamination in Southeast Asia. In: Kumar M, Snow D, Honda R (eds) Emerging issues in the water environment during anthropocene. Springer transactions in civil and environmental engineering. Springer, Singapore

    Google Scholar 

  • Mijangos L, Ziarrusta H, Prieto A, Zugazua O, Zuloaga O, Olivares M, Usobiaga A, Paschke A, Etxebarria N (2018) Evaluation of polar organic chemical integrative and hollow fibre samplers for the determination of a wide variety of organic polar compounds in seawater. Talanta 185:469–476

    Article  CAS  PubMed  Google Scholar 

  • Mills GA, Aguilar-Martínez R, Greenwood R, Allan IJ, Brümmer J, Knutsson J, Vrana B (2010) Developments in the use of passive sampling devices for monitoring pollutants in water. Handbook of sample preparation. Wiley, pp 341–363

    Google Scholar 

  • Mirasole C, Di Carro M, Tanwar S, Magi E (2016) Liquid chromatography–tandem mass spectrometry and passive sampling: powerful tools for the determination of emerging pollutants in water for human consumption. J Mass Spectrom 51:814–820

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mohapatra S, Padhye LP, Mukherji S (2018) Challenges in detection of antibiotics in wastewater matrix. In: Gupta T, Agarwal A, Agarwal R, Labhsetwar N (eds) Environmental contaminants. energy, environment, and sustainability. Springer, Singapore

    Google Scholar 

  • Mohapatra S, Menon NG, Padhye LP, Tatiparti SSV, Mukherji S (2021) Natural attenuation of pharmaceuticals in the aquatic environment and role of phototransformation. In: Kumar M, Snow DD, Honda R, Mukherjee S (eds) Contaminants in drinking and wastewater sources: challenges and reigning technologies. Springer Singapore, Singapore, pp 65–94

    Google Scholar 

  • Morin N, Camilleri J, Cren-Olivé C, Coquery M, Miège C (2013) Determination of uptake kinetics and sampling rates for 56 organic micropollutants using “pharmaceutical” POCIS. Talanta 109:61–73

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. Trends Anal Chem 36:144–175

    Article  CAS  Google Scholar 

  • Morrison SA, Belden JB (2016) Calibration of nylon organic chemical integrative samplers and sentinel samplers for quantitative measurement of pulsed aquatic exposures. J Chromatogr A 1449:109–117

    Article  CAS  PubMed  Google Scholar 

  • Namiesnik J, Zabiegala B, Kot-Wasik A, Partyka M, Wasik A (2005) Passive sampling and/or extraction techniques in environmental analysis: a review. Anal Bioanal Chem 381:279–301

    Article  CAS  PubMed  Google Scholar 

  • Nitti F (2020) Development of flow-through devices for passive sampling of zinc (II) in aquatic systems free from environmental effects. University of Melbourne, Ph.D

    Google Scholar 

  • Nitti F, Almeida MIGS, Morrison R, Cattrall RW, Pettigrove VJ, Coleman RA, Kolev SD (2018) Development of a portable 3D-printed flow-through passive sampling device free of flow pattern effects. Microchem J 143:359–366

    Article  CAS  Google Scholar 

  • Petrie B, Gravell A, Mills GA, Youdan J, Barden R, Kasprzyk-Hordern B (2016) In situ calibration of a new Chemcatcher configuration for the determination of polar organic micropollutants in wastewater effluent. Environ Sci Technol 50:9469–9478

    Article  CAS  PubMed  ADS  Google Scholar 

  • Prosser RS, Sibley PK (2015) Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ Int 75:223–233

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Tao J, Tan F, Cui Y, Li X, Chen J, He X, Wang Y (2018) Diffusive gradients in thin films based on MOF-derived porous carbon binding gel for in-situ measurement of antibiotics in waters. Sci Total Environ 645:482–490

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rimayi C, Chimuka L, Gravell A, Fones GR, Mills GA (2019) Use of the Chemcatcher® passive sampler and time-of-flight mass spectrometry to screen for emerging pollutants in rivers in Gauteng Province of South Africa. Environ Monit Assess 191:388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seethapathy S, Gorecki T, Li X (2008) Passive sampling in environmental analysis. J Chromatogr A 1184:234–253

    Article  CAS  PubMed  Google Scholar 

  • Škodová A, Prokeš R, Šimek Z, Vrana B (2016) In situ calibration of three passive samplers for the monitoring of steroid hormones in wastewater. Talanta 161:405–412

    Article  PubMed  CAS  Google Scholar 

  • Stroski KM, Challis JK, Wong CS (2018) The influence of pH on sampler uptake for an improved configuration of the organic-diffusive gradients in thin films passive sampler. Anal Chim Acta 1018:45–53

    Article  CAS  PubMed  Google Scholar 

  • Stroski KM, Luong KH, Challis JK, Chaves-Barquero LG, Hanson ML, Wong CS (2020) Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci Total Environ 708:134494

    Google Scholar 

  • Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136:503–524

    Article  CAS  PubMed  Google Scholar 

  • Sultana T, Murray C, Ehsanul Hoque M, Metcalfe CD (2016) Monitoring contaminants of emerging concern from tertiary wastewater treatment plants using passive sampling modelled with performance reference compounds. Environ Monit Assess 189:1

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Fones G, Vrana B, Mills G (2019) Applications for passive sampling of hydrophobic organic contaminants in water—a review. Crit Rev Anal Chem 1–35

    Google Scholar 

  • Urík J, Vrana B (2019) An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ Sci Pollut Res 26:15273–15284

    Article  CAS  Google Scholar 

  • Vrana B, Mills GA, Allan IJ, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem 24:845–868

    Article  CAS  Google Scholar 

  • Vrana B, Mills GA, Dominiak E, Greenwood R (2006) Calibration of the Chemcatcher passive sampler for the monitoring of priority organic pollutants in water. Environ Pollut 142:333–343

    Article  CAS  PubMed  Google Scholar 

  • Vystavna Y, Frkova Z, Marchand L, Vergeles Y, Stolberg F (2017) Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecol Eng 108:50–58

    Article  Google Scholar 

  • Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H (2021) Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: a review. Sci Total Environ 788:147819

    Google Scholar 

  • Wang R, Biles E, Li Y, Juergens MD, Bowes MJ, Jones KC, Zhang H (2020a) In situ catchment scale sampling of emerging contaminants using diffusive gradients in thin films (DGT) and traditional grab sampling: a case study of the river thames, UK. Environ Sci Technol 54:11155–11164

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang R, Jones KC, Zhang H (2020b) Monitoring organic pollutants in waters using the diffusive gradients in the thin films technique: investigations on the effects of biofouling and degradation. Environ Sci Technol 54:7961–7969

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xie H, Chen Q, Chen J, Chen C-EL, Du J (2018) Investigation and application of diffusive gradients in thin-films technique for measuring endocrine disrupting chemicals in seawaters. Chemosphere 200:351–357

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yin X, Guo C, Lv J, Hou S, Zhang Y, Jin X, Teng Y, Xu J (2019) Biomimetic accumulation of methamphetamine and its metabolite amphetamine by diffusive gradients in thin films to estimate their bioavailability in zebrafish. Environ Sci Technol Lett 6:708–713

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang T, Guo C, Hou S, Hua Z, Lv J, Zhang Y, Xu J (2018) Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. Sci Total Environ 618:284–290

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidelis Nitti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nitti, F., Kapitan, O.B., Ola, P.D., Siswanta, D. (2022). Passive Sampling Techniques for Monitoring of Pharmaceuticals and Personal Care Products in Water Matrix: Trends from 2016 to 2020. In: Kumar, M., Mohapatra, S. (eds) Impact of COVID-19 on Emerging Contaminants. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1847-6_2

Download citation

Publish with us

Policies and ethics