Skip to main content

Carbon Nanotubes in Organic Catalysis

  • Chapter
  • First Online:
Carbon Composite Catalysts

Abstract

Nanoscience and nanotechnology have revolutionized organic catalysis, increasing the efficiency of these reactions and reducing their environmental impact. Particularly, carbon nanotubes are widely used in many organic reactions such as C–C couplings, hydrogenations, alkane dehydrogenations, transesterifications and oxidations. Excellent results have been obtained in terms of the synthesis of the catalysts, reaction yields, selectivity, and reusability. In this review, we provide a general overview of the design, synthesis, and use of carbon nanotubes as catalysts and catalytic supports, along with the main strategies for their surface functionalization and doping with heteroatoms. Concluding considerations from the authors’ perspective are provided, regarding the promising use of these materials and the challenges to be faced in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACN :

6-Aminohexanenitrile

ADN :

Adiponitrile

AP :

Acetophenone

BINO :

1,1′-Bi-2-naphthol

BP :

2-Phenyl-2-propanol

CAL :

Cinnamaldehyde

CD :

Cinchonidine

CDNS :

Cyclodextrin nanosponges

CHP :

And cumene hydroperoxide

CN :

Carbon nitrides

CNF :

Carbon nanofibers

CNTs :

Carbon nanotubes

COL :

Cinnamyl alcohol

CPA :

2-Chloroethylphosphonic acid

CVD :

Chemical vapor deposition

DME :

Dimethyl ether

DMO :

Dimethyl oxalate

EB :

Ethylbenzene

EDA :

Ethylenediamine

EIS :

Electrochemical impedance spectroscopy

EL :

Ethyl lactate

EOR :

Electrooxidation reaction

EP :

Ethyl pyruvate

FA :

Formaldehyde

FTS :

Fischer–tropsch synthesis

GO :

Graphene oxide

HDA :

1,6-Hexanediamine

HTC :

Hydrothermal carbonization

LCST :

Lower critical solution temperature

MTU :

S-methylisothiourea

MWCNTs :

Multiwalled carbon nanotubes

nB :

N-butanol

NCNTs :

Nitrogen-doped carbon nanotubes

NPs :

Nanoparticles

ODH :

Oxidative dehydrogenation reactions

PANI :

Polyaniline

PC :

Poly(citric acid) dendrimer

PCC :

Pyridinium chlorochromate

PDA :

Polydiacetylenes

PL :

Photoluminescence

PMS :

Peroxymonosulfate

PNIPAM :

Poly(N-isopropylacrylamide)

PVP :

Polyvinylpyrrolidone

RGO :

Reduced graphene oxide

SDS :

Sodium dodecylsulfate

SMTU :

S-methylisothiourea hemisulfate

SPR :

Surface plasmon resonance

SWCNT :

Single walled carbon nanotubes

TBAB :

Tetrabutylammonium bromide

TBHP :

Tert-butyl hydroperoxide

TC :

Tetracycline hydrochloride

TH :

Transfer hydrogenation

References

  1. Campisciano V, Gruttadauria M, Giacalone F (2019) Modified nanocarbons for catalysis. Chem Cat Chem 11:90–133. https://doi.org/10.1002/cctc.201801414

    Article  CAS  Google Scholar 

  2. Li S, Zhao Z, Zhao J, Zhang Z, Li X, Zhang J (2020) Recent advances of Ferro-, Piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl Nano Mater 3:1063–1079. https://doi.org/10.1021/acsanm.0c00039

    Article  CAS  Google Scholar 

  3. Esteves LM, Oliveira HA, Passos FB (2018) Carbon nanotubes as catalyst support in chemical vapor deposition reaction: a review. J Ind Eng Chem 65:1–12. https://doi.org/10.1016/j.jiec.2018.04.012

    Article  CAS  Google Scholar 

  4. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  5. Serp P, Castillejos E (2010) Catalysis in carbon nanotubes. ChemCatChem 2:41–47. https://doi.org/10.1002/cctc.200900283

    Article  CAS  Google Scholar 

  6. Yan Y, Miao J, Yang Z, Xiao FX, Bin YH, Liu B et al (2015) Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev 44:3295–3346. https://doi.org/10.1039/c4cs00492b

    Article  CAS  Google Scholar 

  7. Pérez Sestelo J, Sarandeses LA (2020) Advances in cross-coupling reactions. Molecules 25:23–26. https://doi.org/10.3390/molecules25194500

    Article  CAS  Google Scholar 

  8. Hong K, Sajjadi M, Suh JM, Zhang K, Nasrollahzadeh M, Jang HW et al (2020) Palladium nanoparticles on assorted nanostructured supports: applications for suzuki, heck, and sonogashira cross-coupling reactions. ACS Appl Nano Mater 3:2070–2103. https://doi.org/10.1021/acsanm.9b02017

    Article  CAS  Google Scholar 

  9. Polášek J, Paciorek J, Stošek J, Semrád H, Munzarová M, Mazal C (2020) Stereoselective bromoboration of acetylene with boron tribromide: preparation and cross-coupling reactions of (Z)-bromovinylboronates. J Org Chem 85:6992–7000. https://doi.org/10.1021/acs.joc.0c00341

    Article  CAS  Google Scholar 

  10. Huang X, Yao F, Wei T, Cai M (2017) A highly efficient and recyclable Pd(PPh3)4/PEG-400 system for Stille cross-coupling reactions of organostannanes with aryl bromides. J Chem Res 41:547–550. https://doi.org/10.3184/174751917X15045169836226

    Article  CAS  Google Scholar 

  11. Xu W, Liu Y, Kato T, Maruoka K (2021) The formation of C-C or C-N bonds via the copper-catalyzed coupling of alkylsilyl peroxides and organosilicon compounds: a route to perfluoroalkylation. Org Lett 23:1809–1813. https://doi.org/10.1021/acs.orglett.1c00215

    Article  CAS  Google Scholar 

  12. Menges-Flanagan G, Deitmann E, Gössl L, Hofmann C, Löb P (2021) Scalable continuous synthesis of organozinc reagents and their immediate subsequent coupling reactions. Org Process Res Dev 25:427–433. https://doi.org/10.1021/acs.oprd.0c00399

    Article  CAS  Google Scholar 

  13. Gao X, Zhang Q, Hu J, Zhang H (2020) Ferrocene-containing cross-conjugated polymers synthesized by palladium-catalyzed cross-coupling polymerization. Polymer (Guildf) 207:122827. https://doi.org/10.1016/j.polymer.2020.122827

    Article  CAS  Google Scholar 

  14. Buskes MJ (2020) Impact of cross-coupling reactions in drug discovery and development. Molecules 25:3493. https://doi.org/10.1089/gen.34.08.07

    Article  CAS  Google Scholar 

  15. Ben-Lulu M, Gaster E, Libman A, Pappo D (2020) Synthesis of biaryl-bridged cyclic peptides via catalytic oxidative cross-coupling reactions. Angew Chemie - Int Ed 59:4835–4839. https://doi.org/10.1002/anie.201913305

    Article  CAS  Google Scholar 

  16. Nolan SP, Navarro O (2007) C-C bond formation by cross-coupling, vol 11. Elsevier Inc. https://doi.org/10.1016/b0-08-045047-4/00143-6

  17. Huang X, Teng S, Chi YR, Xu W, Pu M, Wu YD et al (2021) Enantioselective intermolecular heck and reductive heck reactions of aryl triflates, mesylates, and tosylates catalysed by nickel. Angew Chemie—Int Ed 60:2828–2832. https://doi.org/10.1002/anie.202011036

    Article  CAS  Google Scholar 

  18. Xie JQ, Liang RX, Jia YX (2021) Recent advances of catalytic enantioselective heck reactions and reductive-heck reactions. Chinese J Chem 39:710–728. https://doi.org/10.1002/cjoc.202000464

    Article  CAS  Google Scholar 

  19. Zheng YL, Newman SG (2021) Cross-coupling reactions with esters, aldehydes, and alcohols. Chem Commun 57:2591–2604. https://doi.org/10.1039/d0cc08389e

    Article  CAS  Google Scholar 

  20. Moghaddam FM, Pourkaveh R, Karimi A (2017) Oxidative heck reaction as a tool for para-selective olefination of aniline: a DFT supported mechanism. J Org Chem 82:10635–10640. https://doi.org/10.1021/acs.joc.7b01570

    Article  CAS  Google Scholar 

  21. Guo T, Ding Y, Zhou L, Xu H, Loh TP, Wu X (2020) Palladium-catalyzed anti-michael reductive heck reaction of α, β-unsaturated esters. ACS Catal 10:7262–7268. https://doi.org/10.1021/acscatal.0c02414

    Article  CAS  Google Scholar 

  22. Zhou F, Zhou F, Su R, Yang Y, You J (2020) Build-up of double carbohelicenes using nitroarenes: dual role of the nitro functionality as an activating and leaving group. Chem Sci 11:7424–7428. https://doi.org/10.1039/d0sc02058c

    Article  CAS  Google Scholar 

  23. Hajipour AR, Khorsandi Z, Farrokhpour H (2019) In situ synthesis of carbon nanotube-encapsulated cobalt nanoparticles by a novel and simple chemical treatment process: efficient and green catalysts for the heck reaction. New J Chem 43:8215–8219. https://doi.org/10.1039/c9nj00813f

    Article  CAS  Google Scholar 

  24. Hajipour AR, Khorsandi Z, Karimi H (2015) Cobalt nanoparticles supported on ionic liquid-functionalized multiwall carbon nanotubes as an efficient and recyclable catalyst for Heck reaction. Appl Organomet Chem 29:805–808. https://doi.org/10.1002/aoc.3372

    Article  CAS  Google Scholar 

  25. Gopiraman M, Karvembu R, Kim IS (2014) Highly active, selective, and reusable RuO2/SWCNT catalyst for heck olefination of aryl halides. ACS Catal 4:2118–2129. https://doi.org/10.1021/cs500460m

    Article  CAS  Google Scholar 

  26. Wen X, Dai T, Zhao Z, Luo Z, Chen C, Sun W et al (2020) In situ preparation of magnetic nickel-containing functionalized carbon nanotubes to support palladium as a catalyst for the heck reaction. Appl Catal A Gen 591:117405. https://doi.org/10.1016/j.apcata.2019.117405

    Article  CAS  Google Scholar 

  27. Yu R, Liu R, Deng J, Ran M, Wang N, Chu W et al (2018) Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst. Catal Sci Technol 8:1423–1434. https://doi.org/10.1039/c7cy02588b

    Article  CAS  Google Scholar 

  28. Ombaka LM, Ndungu PG, Kibet J, Nyamori VO (2017) The effect of pyridinic- and pyrrolic-nitrogen in nitrogen-doped carbon nanotubes used as support for Pd-catalyzed nitroarene reduction: an experimental and theoretical study. J Mater Sci 52:10751–10765. https://doi.org/10.1007/s10853-017-1241-0

    Article  CAS  Google Scholar 

  29. Wang LL, Zhu LP, Bing NC, Wang LJ (2017) Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J Phys Chem Solids 107:125–130. https://doi.org/10.1016/j.jpcs.2017.03.025

    Article  CAS  Google Scholar 

  30. Ghasemzadeh MS, Akhlaghinia B (2019) PdII immobilized on ferromagnetic multi-walled carbon nanotubes functionalized by aminated 2-chloroethylphosphonic acid with S -Methylisothiourea (FMMWCNTs@CPA@SMTU@PdII NPs) applied as a highly efficient and recyclable nanostructured catalyst for suzuki-. Aust J Chem 72:674–692. https://doi.org/10.1071/CH19117

    Article  CAS  Google Scholar 

  31. Hajipour AR, Khorsandi Z (2016) Immobilized Pd on (S)-methyl histidinate-modified multi-walled carbon nanotubes: a powerful and recyclable catalyst for Mizoroki-Heck and Suzuki-Miyaura C-C cross-coupling reactions in green solvents and under mild conditions. Appl Organomet Chem 30:256–261. https://doi.org/10.1002/aoc.3425

    Article  CAS  Google Scholar 

  32. Movassagh B, Parvis FS, Navidi M (2015) 40–44 Pd(II) salen complex covalently anchored to multi-walled carbon nanotubes as a heterogeneous and reusable precatalyst for Mizoroki-Heck and Hiyama cross-coupling reactions. Appl Organomet Chem 29:40–44. https://doi.org/10.1002/aoc.3246

    Article  CAS  Google Scholar 

  33. Hajipour AR, Khorsandi Z, Farrokhpour H (2016) Regioselective Heck reaction catalyzed by Pd nanoparticles immobilized on DNA-modified MWCNTs. RSC Adv 6:59124–59130. https://doi.org/10.1039/c6ra11737f

    Article  CAS  Google Scholar 

  34. Lakshminarayana B, Mahendar L, Ghosal P, Satyanarayana G, Subrahmanyam C (2017) Nano-sized recyclable PdO supported carbon nanostructures for Heck Reaction: influence of carbon materials. ChemistrySelect 2:2700–2707. https://doi.org/10.1002/slct.201602051

    Article  CAS  Google Scholar 

  35. Ohtaka A, Sansano JM, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorõs D (2015) Palladium and bimetallic palladium-nickel nanoparticles supported on multiwalled carbon nanotubes: application to carbon-carbon bond-forming reactions in water. ChemCatChem 7:1841–1847. https://doi.org/10.1002/cctc.201500164

    Article  CAS  Google Scholar 

  36. Sadjadi S, Heravi MM, Raja M (2018) Combination of carbon nanotube and cyclodextrin nanosponge chemistry to develop a heterogeneous Pd-based catalyst for ligand and copper free C-C coupling reactions. Carbohydr Polym 185:48–55. https://doi.org/10.1016/j.carbpol.2018.01.020

    Article  CAS  Google Scholar 

  37. Eremin DB, Boiko DA, Kostyukovich AY, Burykina JV, Denisova EA, Anania M et al (2020) Mechanistic study of Pd/NHC-catalyzed Sonogashira reaction: discovery of NHC-Ethynyl coupling process. Chem—A Eur J 26:15672–15681. https://doi.org/10.1002/chem.202003533

    Article  CAS  Google Scholar 

  38. Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N (2021) Copper-free Sonogashira cross-coupling reactions: an overview. RSC Adv 11:6885–6925. https://doi.org/10.1039/d0ra10575a

    Article  CAS  Google Scholar 

  39. Mansour AM (2016) Tazarotene copper complexes: Synthesis, crystal structure, DFT and biological activity evaluation. Polyhedron 109:99–106. https://doi.org/10.1016/j.poly.2016.01.041

    Article  CAS  Google Scholar 

  40. Wagner FF, Comins DL (2006) Expedient five-step synthesis of SIB-1508Y from natural nicotine. J Org Chem 71:8673–8675. https://doi.org/10.1021/jo0616052

    Article  CAS  Google Scholar 

  41. Hajipour AR, Jajarmi S (2018) A novel and highly efficient polyaniline-functionalized multiwall carbon nanotube-supported cu(I) complex for Sonogashira coupling reactions of aryl halides with phenylacetylene. Appl Organomet Chem 32:1–7. https://doi.org/10.1002/aoc.3992

    Article  CAS  Google Scholar 

  42. Ghasemzadeh MS, Akhlaghinia B (2019) FMMWCNTs@CPA@SMTU@PdII NPs: as a versatile ferromagnetic nanostructured catalyst for sonogashira-hagihara cross-coupling reaction in solvent-free conditions. ChemistrySelect 4:1542–1555. https://doi.org/10.1002/slct.201803453

    Article  CAS  Google Scholar 

  43. Abbasi S, Hekmati M (2017) Functionalization of multi-walled carbon nanotubes with pramipexole for immobilization of palladium nanoparticles and investigation of catalytic activity in the Sonogashira coupling reaction. Appl Organomet Chem 31:1–8. https://doi.org/10.1002/aoc.3600

    Article  CAS  Google Scholar 

  44. Nazari P, Hekmati M (2019) Functionalization of multi-walled carbon nanotubes by the baclofen drug to immobilize palladium nanoparticles and catalyze Sonogashira coupling reactions. Appl Organomet Chem 33:1–8. https://doi.org/10.1002/aoc.4729

    Article  CAS  Google Scholar 

  45. Adib M, Karimi-Nami R, Veisi H (2016) Palladium NPs supported on novel imino-pyridine-functionalized MWCNTs: efficient and highly reusable catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions. New J Chem 40:4945–4951. https://doi.org/10.1039/c5nj02842f

    Article  CAS  Google Scholar 

  46. Kuchkina NV, Haskell AK, Sorokina SA, Torozova AS, Nikoshvili LZ, Sulman EM et al (2020) Pd catalyst based on hyperbranched polypyridylphenylene formed in situ on magnetic silica allows for excellent performance in Suzuki-Miyaura reaction. ACS Appl Mater Interfaces 12:22170–22178. https://doi.org/10.1021/acsami.0c04357

    Article  CAS  Google Scholar 

  47. Nan L, Yalan C, Jixiang L, Dujuan O, Wenhui D, Rouhi J et al (2020) Carbonylative Suzuki-Miyaura cross-coupling by immobilized Ni@Pd NPs supported on carbon nanotubes. RSC Adv 10:27923–27931. https://doi.org/10.1039/d0ra03915b

    Article  CAS  Google Scholar 

  48. Ghorbani-Vaghei R, Hemmati S, Hashemi M, Veisi H (2015) Diethylenetriamine-functionalized single-walled carbon nanotubes (SWCNTs) to immobilization palladium as a novel recyclable heterogeneous nanocatalyst for the Suzuki-Miyaura coupling reaction in aqueous media. Comptes Rendus Chim 18:636–643. https://doi.org/10.1016/j.crci.2014.10.010

    Article  CAS  Google Scholar 

  49. Hajighorbani M, Hekmati M (2016) Pd nanoparticles deposited on Isoniazid grafted multi walled carbon nanotubes: synthesis, characterization and application for Suzuki reaction in aqueous media. RSC Adv 6:88916–88924. https://doi.org/10.1039/c6ra19934h

    Article  CAS  Google Scholar 

  50. Lee EK, Park SA, Woo H, Hyun Park K, Kang DW, Lim H et al (2017) Platinum single atoms dispersed on carbon nanotubes as reusable catalyst for Suzuki coupling reaction. J Catal 352:388–393. https://doi.org/10.1016/j.jcat.2017.05.005

    Article  CAS  Google Scholar 

  51. Labulo AH, Omondi B, Nyamori VO (2018) Suzuki-Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst. J Mater Sci 53:15817–15836. https://doi.org/10.1007/s10853-018-2748-8

    Article  CAS  Google Scholar 

  52. Cornelio B, Rance GA, Laronze-Cochard M, Fontana A, Sapi J, Khlobystov AN (2013) Palladium nanoparticles on carbon nanotubes as catalysts of cross-coupling reactions. J Mater Chem A 1:8737–8744. https://doi.org/10.1039/c3ta11530e

    Article  CAS  Google Scholar 

  53. Veisi H, Nikseresht A, Ahmadi N, Khosravi K, Saeidifar F (2019) Suzuki-Miyaura reaction by heterogeneously supported Pd nanoparticles on thio-modified multi walled carbon nanotubes as efficient nanocatalyst. Polyhedron 162:240–244. https://doi.org/10.1016/j.poly.2019.01.070

    Article  CAS  Google Scholar 

  54. Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li H et al (2015) Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catal Sci Technol 5:2388–2392. https://doi.org/10.1039/c4cy01680g

    Article  CAS  Google Scholar 

  55. Yang F, Chi C, Dong S, Wang C, Jia X, Ren L et al (2015) Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal Today 256:186–192. https://doi.org/10.1016/j.cattod.2015.02.026

    Article  CAS  Google Scholar 

  56. Veisi H, Khazaei A, Safaei M, Kordestani D (2014) Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki-Miyaura coupling reaction. J Mol Catal A Chem 382:106–113. https://doi.org/10.1016/j.molcata.2013.10.028

    Article  CAS  Google Scholar 

  57. Cano M, Benito AM, Maser WK, Urriolabeitia EP (2013) High catalytic performance of palladium nanoparticles supported on multiwalled carbon nanotubes in alkene hydrogenation reactions. New J Chem 37:1968–1972. https://doi.org/10.1039/c3nj00183k

    Article  CAS  Google Scholar 

  58. Wang D, Astruc D (2015) The golden age of transfer hydrogenation. Chem Rev 115:6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203

    Article  CAS  Google Scholar 

  59. Zhang XY, Du HZ, Zhai DD, Guan BT, Guan BT (2020) Combined KH/alkaline-earth metal amide catalysts for hydrogenation of alkenes. Org Chem Front 7:1991–1996. https://doi.org/10.1039/d0qo00383b

    Article  CAS  Google Scholar 

  60. Bakuru VR, Samanta D, Maji TK, Kalidindi SB (2020) Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalt Trans 49:5024–5028. https://doi.org/10.1039/d0dt00472c

    Article  CAS  Google Scholar 

  61. Weber S, Brünig J, Veiros LF, Kirchner K (2021) Manganese-catalyzed hydrogenation of ketones under mild and base-free conditions. Organometallics 40:1388–1394. https://doi.org/10.1021/acs.organomet.1c00161

    Article  CAS  Google Scholar 

  62. Sarkar K, Das K, Kundu A, Adhikari D, Maji B (2021) Phosphine-free manganese catalyst enables selective transfer hydrogenation of nitriles to primary and secondary amines using ammonia-borane. ACS Catal 11:2786–2794. https://doi.org/10.1021/acscatal.0c05406

    Article  CAS  Google Scholar 

  63. Chen X, Deng D, Pan X, Bao X (2015) Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins. Cuihua Xuebao/Chinese J Catal 36:1631–1637. https://doi.org/10.1016/S1872-2067(15)60882-8

    Article  CAS  Google Scholar 

  64. Yang Z, Guo S, Pan X, Wang J, Bao X (2011) FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy Environ Sci 4:4500–4503. https://doi.org/10.1039/c1ee01428e

    Article  CAS  Google Scholar 

  65. Wang S, Wu T, Lin J, Ji Y, Yan S, Pei Y et al (2020) Iron-potassium on single-walled carbon nanotubes as efficient Catalyst for CO2 hydrogenation to heavy olefins. ACS Catal 10:6389–6401. https://doi.org/10.1021/acscatal.0c00810

    Article  CAS  Google Scholar 

  66. Kangvansura P, Chew LM, Saengsui W, Santawaja P, Poo-arporn Y, Muhler M et al (2016) Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catal Today 275:59–65. https://doi.org/10.1016/j.cattod.2016.02.045

    Article  CAS  Google Scholar 

  67. Sadjadi S, Koohestani F (2020) Pd immobilized on polymeric network containing imidazolium salt, cyclodextrin and carbon nanotubes: efficient and recyclable catalyst for the hydrogenation of nitroarenes in aqueous media. J Mol Liq 301:112414. https://doi.org/10.1016/j.molliq.2019.112414

    Article  CAS  Google Scholar 

  68. Liu L, Lou H, Chen M (2018) Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Appl Catal A Gen 550:1–10. https://doi.org/10.1016/j.apcata.2017.10.003

    Article  CAS  Google Scholar 

  69. Chen Z, Guan Z, Li M, Yang Q, Li C (2011) Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew Chemie 123:5015–5019. https://doi.org/10.1002/ange.201006870

    Article  Google Scholar 

  70. Romero-Sáez M, Dongil AB, Benito N, Espinoza-González R, Escalona N, Gracia F (2018) CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl Catal B Environ 237:817–825. https://doi.org/10.1016/j.apcatb.2018.06.045

    Article  CAS  Google Scholar 

  71. Ai P, Tan M, Yamane N, Liu G, Fan R, Yang G et al (2017) Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol. Chem—A Eur J 23:8252–8261. https://doi.org/10.1002/chem.201700821

    Article  CAS  Google Scholar 

  72. Lv Y, Cui H, Liu P, Hao F, Xiong W, Luo H (2019) Functionalized multi-walled carbon nanotubes supported Ni-based catalysts for adiponitrile selective hydrogenation to 6-aminohexanenitrile and 1,6-hexanediamine: switching selectivity with [Bmim]OH. J Catal 372:330–351. https://doi.org/10.1016/j.jcat.2019.03.023

    Article  CAS  Google Scholar 

  73. Tabatabaei Rezaei SJ, Khorramabadi H, Hesami A, Ramazani A, Amani V, Ahmadi R (2017) Chemoselective reduction of nitro and nitrile compounds with magnetic carbon nanotubes-supported Pt(II) catalyst under mild conditions. Ind Eng Chem Res 56:12256–12266. https://doi.org/10.1021/acs.iecr.7b02795

    Article  CAS  Google Scholar 

  74. Zhu J, Dou M, Lu M, Xiang X, Ding X, Liu W et al (2019) Thermo-responsive polymer grafted carbon nanotubes as the catalyst support for selective hydrogenation of cinnamaldehyde: Effects of surface chemistry on catalytic performance. Appl Catal A Gen 575:11–19. https://doi.org/10.1016/j.apcata.2019.02.009

    Article  CAS  Google Scholar 

  75. Che CM, Cheng KW, Chan MCW, Lau TC, Mak CK (2000) Stoichiornetric and catalytic oxidations of alkanes and alcohols mediated by highly oxidizing ruthenium-oxo complexes bearing 6,6’-dichloro-2,2’-bipyridine. J Org Chem 65:7996–8000. https://doi.org/10.1021/jo0010126

    Article  CAS  Google Scholar 

  76. Sheldon RA, Arends IWCE, Ten BGJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781. https://doi.org/10.1021/ar010075n

    Article  CAS  Google Scholar 

  77. Olenin AY, Mingalev PG, Lisichkin GV (2018) Partial catalytic oxidation of alcohols: catalysts based on metals and metal coordination compounds (a review). Pet Chem 58:577–592. https://doi.org/10.1134/S0965544118080182

    Article  CAS  Google Scholar 

  78. Kopylovich MN, Ribeiro APC, Alegria ECBA, Martins NMR, Martins LMDRS, Pombeiro AJL (2015) Catalytic oxidation of alcohols: recent advances. Adv Organomet Chem 63:91–174. https://doi.org/10.1016/bs.adomc.2015.02.004

    Article  CAS  Google Scholar 

  79. Davis SE, Ide MS, Davis RJ (2013) Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem 15:17–45. https://doi.org/10.1039/c2gc36441g

    Article  CAS  Google Scholar 

  80. Alshammari HM, Alshammari AS, Humaidi JR, Alzahrani SA, Alhumaimess MS, Aldosari OF et al (2020) Au-Pd bimetallic nanocatalysts incorporated into carbon nanotubes (CNTs) for selective oxidation of alkenes and alcohol. Processes 8:1–11. https://doi.org/10.3390/pr8111380

    Article  CAS  Google Scholar 

  81. Liu CH, Liu J, Zhou YY, Cai XL, Lu Y, Gao X et al (2015) Small and uniform Pd monometallic/bimetallic nanoparticles decorated on multi-walled carbon nanotubes for efficient reduction of 4-nitrophenol. Carbon N Y 94:295–300. https://doi.org/10.1016/j.carbon.2015.07.003

    Article  CAS  Google Scholar 

  82. Kaboudin B, Saghatchi F, Kazemi F (2019) Synthesis of decorated carbon nanotubes with Fe3O4 and Au nanoparticles and their application in catalytic oxidation of alcohols in water. J Organomet Chem 882:64–69. https://doi.org/10.1016/j.jorganchem.2018.12.012

    Article  CAS  Google Scholar 

  83. Kumar R, Gravel E, Hagège A, Li H, Jawale DV, Verma D et al (2013) Carbon nanotube-gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale 5:6491–6497. https://doi.org/10.1039/c3nr01432k

    Article  CAS  Google Scholar 

  84. Hajian R, Alghour Z (2017) Selective oxidation of alcohols with H2O2 catalyzed by zinc polyoxometalate immobilized on multi-wall carbon nanotubes modified with ionic liquid. Chinese Chem Lett 28:971–975. https://doi.org/10.1016/j.cclet.2016.12.003

    Article  CAS  Google Scholar 

  85. Zhang J, Lu S, Xiang Y, Jiang SP (2020) Intrinsic effect of carbon supports on the activity and stability of precious metal based catalysts for electrocatalytic alcohol oxidation in fuel cells: a review. Chemsuschem 13:2484–2502. https://doi.org/10.1002/cssc.202000048

    Article  CAS  Google Scholar 

  86. Wei Y, Zhang X, Luo Z, Tang D, Chen C, Zhang T et al (2017) Nitrogen-doped carbon nanotube-supported pd catalyst for improved electrocatalytic performance toward ethanol electrooxidation. Nano-Micro Lett 9:1–9. https://doi.org/10.1007/s40820-017-0129-5

    Article  CAS  Google Scholar 

  87. Hiltrop D, Masa J, Maljusch A, Xia W, Schuhmann W, Muhler M (2016) Pd deposited on functionalized carbon nanotubes for the electrooxidation of ethanol in alkaline media. Electrochem Commun 63:30–33. https://doi.org/10.1016/j.elecom.2015.11.010

    Article  CAS  Google Scholar 

  88. Maya-Cornejo J, Garcia-Bernabé A, Compañ V (2018) Bimetallic Pt-M electrocatalysts supported on single-wall carbon nanotubes for hydrogen and methanol electrooxidation in fuel cells applications. Int J Hydrogen Energy 43:872–884. https://doi.org/10.1016/j.ijhydene.2017.10.097

    Article  CAS  Google Scholar 

  89. Yang H, Yu Z, Li S, Zhang Q, Jin J, Ma J (2017) Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. J Catal 353:256–264. https://doi.org/10.1016/j.jcat.2017.07.025

    Article  CAS  Google Scholar 

  90. Zhao H, Wang S, He F, Zhang J, Chen L, Dong P et al (2019) Hydroxylated carbon nanotube/carbon nitride nanobelt composites with enhanced photooxidation and H2 evolution efficiency. Carbon N Y 150:340–348. https://doi.org/10.1016/j.carbon.2019.05.020

    Article  CAS  Google Scholar 

  91. Das B, Sharma M, Baruah MJ, Mounash BP, Karunakar GV, Bania KK (2020) Gold nanoparticle supported on mesoporous vanadium oxide for photo-oxidation of 2-naphthol with hydrogen peroxide and aerobic oxidation of benzyl alcohols. J Environ Chem Eng 8:104268. https://doi.org/10.1016/j.jece.2020.104268

    Article  CAS  Google Scholar 

  92. Liu W, Wang C, Su D, Qi W (2018) Oxidative dehydrogenation of ethylbenzene on nanocarbon: kinetics and reaction mechanism. J Catal 368:1–7. https://doi.org/10.1016/j.jcat.2018.09.023

    Article  CAS  Google Scholar 

  93. Hu X, Liu Y, Huang H, Huang B, Chai G, Xie Z (2020) Template-free synthesis of graphene-like carbons as efficient carbocatalysts for selective oxidation of alkanes. Green Chem 22:1291–1300. https://doi.org/10.1039/c9gc03781k

    Article  CAS  Google Scholar 

  94. Feng L, Liu Y, Jiang Q, Liu W, Wu KH, Ba H et al (2020) Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catal Today 357:231–239. https://doi.org/10.1016/j.cattod.2019.02.046

    Article  CAS  Google Scholar 

  95. Kharissova OV, Kharisov BI, Ulyand IE, García TH (2020) Catalysis using metal-organic framework-derived nanocarbons: recent trends. J Mater Res 35:2190–2207. https://doi.org/10.1557/jmr.2020.166

    Article  CAS  Google Scholar 

  96. Schaetz A, Zeltner M, Stark WJ (2012) Carbon modifications and surfaces for catalytic organic transformations. ACS Catal 2:1267–1284. https://doi.org/10.1021/cs300014k

    Article  CAS  Google Scholar 

  97. Qi W, Liu W, Guo X, Schlögl R, Su D (2015) Oxidative dehydrogenation on nanocarbon: intrinsic catalytic activity and structure-function relationships. Angew Chemie 127:13886–13889. https://doi.org/10.1002/ange.201505818

    Article  Google Scholar 

  98. Maniecki T, Shtyka O, Mierczynski P, Ciesielski R, Czylkowska A, Leyko J et al (2018) Carbon Nanotubes: Properties, Synthesis, and Application. Fibre Chem 50:297–300. https://doi.org/10.1007/s10692-019-09979-2

    Article  CAS  Google Scholar 

  99. Pereira MFR, Orfão JJM, Figueiredo JL (2000) Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts 2 Kinetic modelling. Appl Catal A Gen 196:43–54. https://doi.org/10.1016/S0926-860X(99)00447-0

    Article  CAS  Google Scholar 

  100. Shi L, Qi W, Liu W, Yan P, Li F, Sun J et al (2018) Carbon nitride modified nanocarbon materials as efficient non-metallic catalysts for alkane dehydrogenation. Catal Today 301:48–54. https://doi.org/10.1016/j.cattod.2017.03.047

    Article  CAS  Google Scholar 

  101. Tian S, Yan P, Li F, Zhang X, Su D, Qi W (2019) Fabrication of polydopamine modified carbon nanotube hybrids and their catalytic activity in ethylbenzene dehydrogenation. ChemCatChem 11:2073–2078. https://doi.org/10.1002/cctc.201900146

    Article  CAS  Google Scholar 

  102. Zhou Q, Guo X, Song C, Zhao Z, Defect-Enriched N (2019) O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. ACS Appl Nano Mater 2:2152–2159. https://doi.org/10.1021/acsanm.9b00124

    Article  CAS  Google Scholar 

  103. Kładna A, Marchlewicz M, Piechowska T, Kruk I, Aboul-Enein HY (2015) Reactivity of pyruvic acid and its derivatives towards reactive oxygen species. Luminescence 30:1153–1158. https://doi.org/10.1002/bio.2879

    Article  CAS  Google Scholar 

  104. Sugiyama S, Fukunaga S, Ito K, Ohigashi S, Hayashi H (1991) Catalysts for vapor-phase dehydration of ethylene glycol and their application to pyruvic acid synthesis. J Catal 129:12–18. https://doi.org/10.1016/0021-9517(91)90003-M

    Article  CAS  Google Scholar 

  105. Hayashi H, Shigemoto N, Sugiyama S, Masaoka N, Saitoh K (1993) X-ray photoelectron spectra for the oxidation state of TeO2-MoO3 catalyst in the vapor-phase selective oxidation of ethyl lactate to pyruvate. Catal Letters 19:273–277. https://doi.org/10.1007/BF00771764

    Article  CAS  Google Scholar 

  106. Schwartz TJ, O’Neill BJ, Shanks BH, Dumesic JA (2014) Bridging the chemical and biological catalysis gap: Challenges and outlooks for producing sustainable chemicals. ACS Catal 4:2060–2069. https://doi.org/10.1021/cs500364y

    Article  CAS  Google Scholar 

  107. Wang D, Liu W, Xie Z, Tian S, Su D, Qi W (2020) Oxidative dehydrogenation of ethyl lactate over nanocarbon catalysts: Effect of oxygen functionalities and defects. Catal Today 347:96–101. https://doi.org/10.1016/j.cattod.2018.06.018

    Article  CAS  Google Scholar 

  108. Zhao X, Zhang C, Xu C, Li H, Huang H, Song L et al (2016) Kinetics study for the oxidative dehydrogenation of ethyl lactate to ethyl pyruvate over MoVNbOx based catalysts. Chem Eng J 296:217–224. https://doi.org/10.1016/j.cej.2016.03.088

    Article  CAS  Google Scholar 

  109. Liu W, Chen B, Duan X, Wu KH, Qi W, Guo X et al (2017) Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. ACS Catal 7:5820–5827. https://doi.org/10.1021/acscatal.7b01905

    Article  CAS  Google Scholar 

  110. Rinaldi A, Zhang J, Frank B, Su DS, Hamid SBA, Schlögl R (2010) Oxidative purification of carbon nanotubes and its impact on catalytic performance in oxidative dehydrogenation reactions. Chemsuschem 3:254–260. https://doi.org/10.1002/cssc.200900179

    Article  CAS  Google Scholar 

  111. Raun KV, Lundegaard LF, Beato P, Appel CC, Nielsen K, Thorhauge M et al (2020) Stability of iron-molybdate catalysts for selective oxidation of methanol to formaldehyde: influence of preparation method. Catal Letters 150:1434–1444. https://doi.org/10.1007/s10562-019-03034-9

    Article  CAS  Google Scholar 

  112. Yuan M, Che Y, Tang R, Li S, Zhang Y, Tian Y et al (2020) One-step synthesis of methylal via methanol oxidation by Mo:Fe(x)/HZSM-5 bifunctional catalyst. Fuel 261:116416. https://doi.org/10.1016/j.fuel.2019.116416

    Article  CAS  Google Scholar 

  113. Shimoda K, Ishikawa S, Tashiro M, Kumaki M, Hiyoshi N, Ueda W (2020) Synthesis of high dimensionally structured Mo-Fe mixed metal oxide and its catalytic activity for selective oxidation of methanol. Inorg Chem 59:5252–5255. https://doi.org/10.1021/acs.inorgchem.9b03713

    Article  CAS  Google Scholar 

  114. Barbarossa V, Viscardi R, Di Nardo A, Santagata A (2020) Kinetic parameter estimation for methanol dehydration to dimethyl ether over sulfonic and polymeric acid catalysts. J Chem Technol Biotechnol 95:1739–1747. https://doi.org/10.1002/jctb.6372

    Article  CAS  Google Scholar 

  115. Said AEAA, El-Aal MA (2017) Direct dehydrogenation of methanol to anhydrous formaldehyde over Ag2O/γ-Al2O3 nanocatalysts at relatively low temperature. Res Chem Intermed 43:3205–3217. https://doi.org/10.1007/s11164-016-2820-4

    Article  CAS  Google Scholar 

  116. Childers CL, Huang H, Korzeniewski C (1999) Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts. Langmuir 15:786–789. https://doi.org/10.1021/la980798o

    Article  CAS  Google Scholar 

  117. Routray K, Zhou W, Kiely CJ, Grünert W, Wachs IE (2010) Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. J Catal 275:84–98. https://doi.org/10.1016/j.jcat.2010.07.023

    Article  CAS  Google Scholar 

  118. Yan P, Zhang X, Herold F, Li F, Dai X, Cao T et al (2020) Methanol oxidative dehydrogenation and dehydration on carbon nanotubes: active sites and basic reaction kinetics. Catal Sci Technol 10:4952–4959. https://doi.org/10.1039/d0cy00619j

    Article  CAS  Google Scholar 

  119. Cheng W, Liu X, Li N, Han J, Li S, Yu S (2018) Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde. RSC Adv 8:11222–11229. https://doi.org/10.1039/c8ra00290h

    Article  CAS  Google Scholar 

  120. Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M et al (2017) Biobutanol – An impending biofuel for future: a review on upstream and downstream processing tecniques. Renew Sustain Energy Rev 68:788–807. https://doi.org/10.1016/j.rser.2016.10.017

    Article  Google Scholar 

  121. Bagheri S, Muhd JN (2017) Mo3VOx catalyst in biomass conversion: a review in structural evolution and reaction pathways. Int J Hydrogen Energy 42:2116–2126. https://doi.org/10.1016/j.ijhydene.2016.09.173

    Article  CAS  Google Scholar 

  122. Phung TK, Proietti Hernández L, Lagazzo A, Busca G (2015) Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl Catal A Gen 493:77–89. https://doi.org/10.1016/j.apcata.2014.12.047

    Article  CAS  Google Scholar 

  123. Khan Y, Marin M, Viinikainen T, Lehtonen J, Puurunen RL, Karinen R (2018) Structured microreactor with gold and palladium on titania: Active, regenerable and durable catalyst coatings for the gas-phase partial oxidation of 1-butanol. Appl Catal A Gen 562:173–183. https://doi.org/10.1016/j.apcata.2018.06.010

    Article  CAS  Google Scholar 

  124. Lopez-Pedrajas S, Estevez R, Schnee J, Gaigneaux EM, Luna D, Bautista FM (2018) Study of the gas-phase glycerol oxidehydration on systems based on transition metals (Co, Fe, V) and aluminium phosphate. Mol Catal 455:68–77. https://doi.org/10.1016/j.mcat.2018.05.020

    Article  CAS  Google Scholar 

  125. Gu Q, Ding Y, Liu Z, Lin Y, Schlögl R, Heumann S et al (2019) Probing the intrinsic catalytic activity of carbon nanotubes for the metal-free oxidation of aromatic thiophene compounds in ionic liquids. J Energy Chem 32:131–137. https://doi.org/10.1016/j.jechem.2018.07.004

    Article  Google Scholar 

  126. Li F, Yan P, Herold F, Drochner A, Wang H, Cao T et al (2020) Oxygen assisted butanol conversion on bifunctional carbon nanotube catalysts: activity of oxygen functionalities. Carbon N Y 170:580–588. https://doi.org/10.1016/j.carbon.2020.08.053

    Article  CAS  Google Scholar 

  127. Liu W, Wang C, Herold F, Etzold BJM, Su D, Qi W (2019) Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Appl Catal B Environ 258. https://doi.org/10.1016/j.apcatb.2019.117982

  128. Xiong W, Wang Z, He S, Hao F, Yang Y, Lv Y et al (2020) Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl Catal B Environ 260:118105. https://doi.org/10.1016/j.apcatb.2019.118105

    Article  CAS  Google Scholar 

  129. Shameli A, Ameri E (2017) Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol. Chem Eng J 309:381–396. https://doi.org/10.1016/j.cej.2016.10.039

    Article  CAS  Google Scholar 

  130. Wang J, Huang R, Zhang Y, Diao J, Zhang J, Liu H et al (2017) Nitrogen-doped carbon nanotubes as bifunctional catalysts with enhanced catalytic performance for selective oxidation of ethanol. Carbon N Y 111:519–528. https://doi.org/10.1016/j.carbon.2016.10.038

    Article  CAS  Google Scholar 

  131. Li X, Li P, Pan X, Ma H, Bao X (2017) Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Appl Catal B Environ 210:116–120. https://doi.org/10.1016/j.apcatb.2017.03.046

    Article  CAS  Google Scholar 

  132. Fu H, Huang K, Yang G, Cao Y, Wang H, Peng F et al (2020) Synergistic effect of nitrogen dopants on carbon nanotubes on the catalytic selective epoxidation of styrene. ACS Catal 10:129–137. https://doi.org/10.1021/acscatal.9b03584

    Article  CAS  Google Scholar 

  133. Ba H, Duong-Viet C, Liu Y, Nhut JM, Granger P, Ledoux MJ et al (2016) Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S. Comptes Rendus Chim 19:1303–1309. https://doi.org/10.1016/j.crci.2015.09.022

    Article  CAS  Google Scholar 

  134. Garcia-Arriaga V, Alvarez-Ramirez J, Amaya M, Sosa E (2010) H2S and O2 influence on the corrosion of carbon steel immersed in a solution containing 3M diethanolamine. Corros Sci 52:2268–2279. https://doi.org/10.1016/j.corsci.2010.03.016

    Article  CAS  Google Scholar 

  135. Zhang Z, Jiang W, Long D, Wang J, Qiao W, Ling L (2017) A general silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature. ACS Appl Mater Interfaces 9:2477–2484. https://doi.org/10.1021/acsami.6b13597

    Article  CAS  Google Scholar 

  136. Sun F, Liu J, Chen H, Zhang Z, Qiao W, Long D et al (2013) Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S. ACS Catal 3:862–870. https://doi.org/10.1021/cs300791j

    Article  CAS  Google Scholar 

  137. Ba H, Liu Y, Truong-Phuoc L, Duong-Viet C, Mu X, Doh WH et al (2015) A highly N-doped carbon phase “dressing” of macroscopic supports for catalytic applications. Chem Commun 51:14393–14396. https://doi.org/10.1039/c5cc05259a

    Article  CAS  Google Scholar 

  138. Li S, Liu Y, Gong H, Wu KH, Ba H, Duong-Viet C et al (2019) N-doped 3D mesoporous carbon/carbon nanotubes monolithic catalyst for H2S selective oxidation. ACS Appl Nano Mater 2:3780–3792. https://doi.org/10.1021/acsanm.9b00654

    Article  CAS  Google Scholar 

  139. Luo J, Wei H, Liu Y, Zhang D, Zhang B, Chu W et al (2017) Oxygenated group and structural defect enriched carbon nanotubes for immobilizing gold nanoparticles. Chem Commun 53:12750–12753. https://doi.org/10.1039/c7cc06594a

    Article  CAS  Google Scholar 

  140. Yang J, Mou CY (2018) Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Appl Catal B Environ 231:283–291. https://doi.org/10.1016/j.apcatb.2018.02.054

    Article  CAS  Google Scholar 

  141. Wen G, Gu Q, Liu Y, Schlögl R, Wang C, Tian Z et al (2018) Biomass-derived graphene-like carbon: efficient metal-free carbocatalysts for epoxidation. Angew Chemie - Int Ed 57:16898–16902. https://doi.org/10.1002/anie.201809970

    Article  CAS  Google Scholar 

  142. Lin Y, Sun X, Su DS, Centi G, Perathoner S (2018) Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev 47:8438–8473. https://doi.org/10.1039/c8cs00684a

    Article  CAS  Google Scholar 

  143. Wu KH, Wang DW, Zong X, Zhang B, Liu Y, Gentle IR et al (2017) Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. J Mater Chem A 5:3239–3248. https://doi.org/10.1039/c6ta10336g

    Article  CAS  Google Scholar 

  144. Wei H, Ma Y, Luo J, Wu KH, Xie W, Wen G et al (2020) Creation of N-C=O active groups on N-doped CNT as an efficient CarboCatalyst for solvent-free aerobic coupling of benzylamine. Carbon N Y 170:338–346. https://doi.org/10.1016/j.carbon.2020.08.018

    Article  CAS  Google Scholar 

  145. Luo J, Peng F, Yu H, Wang H, Zheng W (2013) Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes. ChemCatChem 5:1578–1586. https://doi.org/10.1002/cctc.201200603

    Article  CAS  Google Scholar 

  146. Balasubramanyan S, Sugunan S, Narayanan BN (2018) Nitrogen-doped sulphonated 3-dimensional holey graphene nanoarchitecture for selective oxidation of ethylbenzene. J Mater Sci 53:12079–12090. https://doi.org/10.1007/s10853-018-2501-3

    Article  CAS  Google Scholar 

  147. Tang P, Gao Y, Yang J, Li W, Zhao H, Ma D (2014) Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene. Cuihua Xuebao/Chinese J Catal 35:922–928. https://doi.org/10.1016/s1872-2067(14)60150-9

    Article  CAS  Google Scholar 

  148. Su Y, Li Y, Chen Z, Huang J, Wang H, Yu H et al (2021) New understanding of selective aerobic oxidation of ethylbenzene catalyzed by nitrogen-doped carbon nanotubes. ChemCatChem 13:646–655. https://doi.org/10.1002/cctc.202001503

    Article  CAS  Google Scholar 

  149. Cao Y, Yu H, Peng F, Wang H (2014) Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catal 4:1617–1625. https://doi.org/10.1021/cs500187q

    Article  CAS  Google Scholar 

  150. Yang JH, Sun G, Gao Y, Zhao H, Tang P, Tan J et al (2013) Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy Environ Sci 6:793–798. https://doi.org/10.1039/c3ee23623d

    Article  CAS  Google Scholar 

  151. Cao Y, Li Y, Yu H, Peng F, Wang H (2015) Aerobic oxidation of α-pinene catalyzed by carbon nanotubes. Catal Sci Technol 5:3935–3944. https://doi.org/10.1039/c5cy00136f

    Article  CAS  Google Scholar 

  152. Cao Y, Yu H, Wang H, Peng F (2017) Solvent effect on the allylic oxidation of cyclohexene catalyzed by nitrogen doped carbon nanotubes. Catal Commun 88:99–103. https://doi.org/10.1016/j.catcom.2016.10.002

    Article  CAS  Google Scholar 

  153. Oberhauser W, Evangelisti C, Tiozzo C, Bartoli M, Frediani M, Passaglia E et al (2017) Platinum nanoparticles onto pegylated poly(lactic acid) stereocomplex for highly selective hydrogenation of aromatic nitrocompounds to anilines. Appl Catal A Gen 537:50–58. https://doi.org/10.1016/j.apcata.2017.03.003

    Article  CAS  Google Scholar 

  154. Xiong W, Wang KJ, Liu XW, Hao F, Xiao HY, Le LP et al (2016) 1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthalene over carbon nanotube supported non-noble metal catalysts under mild conditions. Appl Catal A Gen 514:126–134. https://doi.org/10.1016/j.apcata.2016.01.018

    Article  CAS  Google Scholar 

  155. Kuang Y, Rokubuichi H, Nabae Y, Hayakawa T, Kakimoto MA (2010) A nitric acid-assisted carbon-catalyzed oxidation system with nitroxide radical cocatalysts as an efficient and green protocol for selective aerobic oxidation of alcohols. Adv Synth Catal 352:2635–2642. https://doi.org/10.1002/adsc.201000366

    Article  CAS  Google Scholar 

  156. Luo J, Yu H, Wang H, Wang H, Peng F (2014) Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chem Eng J 240:434–442. https://doi.org/10.1016/j.cej.2013.11.093

    Article  CAS  Google Scholar 

  157. Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141. https://doi.org/10.1016/S0920-5861(99)00315-6

    Article  CAS  Google Scholar 

  158. Long J, Xie X, Xu J, Gu Q, Chen L, Wang X (2012) Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal 2:622–631. https://doi.org/10.1021/cs3000396

    Article  CAS  Google Scholar 

  159. Luo J, Peng F, Yu H, Wang H (2012) Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes. Chem Eng J 204–205:98–106. https://doi.org/10.1016/j.cej.2012.07.098

    Article  CAS  Google Scholar 

  160. Duan X, Ao Z, Zhang H, Saunders M, Sun H, Shao Z et al (2018) Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence. Appl Catal B Environ 222:176–181. https://doi.org/10.1016/j.apcatb.2017.10.007

    Article  CAS  Google Scholar 

  161. Li J, Li M, Sun H, Ao Z, Wang S, Liu S (2020) Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catal 10:3516–3525. https://doi.org/10.1021/acscatal.9b05273

    Article  CAS  Google Scholar 

  162. Su DS, Wen G, Wu S, Peng F, Schlögl R (2017) Carbocatalysis in liquid-phase reactions. Angew Chemie—Int Ed 56:936–964. https://doi.org/10.1002/anie.201600906

    Article  CAS  Google Scholar 

  163. Liao S, Chi Y, Yu H, Wang H, Peng F (2014) Tuning the selectivity in the aerobic oxidation of cumene catalyzed by nitrogen-doped carbon nanotubes. ChemCatChem 6:555–560. https://doi.org/10.1002/cctc.201300909

    Article  CAS  Google Scholar 

  164. Liao S, Peng F, Yu H, Wang H (2014) Carbon nanotubes as catalyst for the aerobic oxidation of cumene to cumene hydroperoxide. Appl Catal A Gen 478:1–8. https://doi.org/10.1016/j.apcata.2014.03.024

    Article  CAS  Google Scholar 

  165. Deng J, Li Y, Cao Y, Wang H, Yu H, Zhang Q et al (2020) Trace amounts of Cu(OAc)2 boost the efficiency of cumene oxidation catalyzed by carbon nanotubes washed with HCl. Catal Sci Technol 10:2523–2530. https://doi.org/10.1039/c9cy02536g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Antuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corcho-Valdés, A.L., Iriarte-Mesa, C., Calzadilla-Maya, J., Matos-Peralta, Y., Desdín-García, L.F., Antuch, M. (2022). Carbon Nanotubes in Organic Catalysis. In: Jawaid, M., Khan, A. (eds) Carbon Composite Catalysts. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-1750-9_7

Download citation

Publish with us

Policies and ethics