Skip to main content

Design of Power-Efficient Operational Transconductance Amplifier in the Application of Low Pass Filter Using 180 nm CMOS Technology

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering (ICEEE 2022)

Abstract

In modern transreceivers, analog base band section is very crucial which deals with channel selectivity, antialiasing and dynamic range. Nowadays OTA become a basic building block of any analog system.For better performance of RF front end a filter which is used in base band section must include many characteristics like high linearity, tunable BW, low noise etc. A second order low pass Gm-C Filter is implemented.The core of this filter is power efficient OTA. The OTA is implemented to operate at a ±1.0 V supply voltage with a power consumption of 0.42 mW. All simulations has been performed using Tanner EDA tool using CMOS technology with parameters TSMC 0.18 µm. The simulation results of this circuit show that it has a high DC gain of 76 dB and a transconductance of 360 µS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, M., Wang, K.: 0.18 mW/pole inverter-based Gm C bandpass filter with automatic frequency tuning. Electron. Lett. 54(15), 943–945 (2018)

    Article  Google Scholar 

  2. Rezaei, F., Azhari, S.J.: A new controllable adaptive biasing linearization technique for a CMOS OTA and its application to tunable Gm-C filter design. Microelectron. J. 46, 810–818 (2015)

    Article  Google Scholar 

  3. Sarrafifinazhad, A., Kara, I., Baskaya, F.: Design of a digitally tunable 5th order GM-C filter using linearized OTA in 90 nm CMOS technology. In: IEEE International Symposium on Signals, Circuits and Systems (ISSCS) (2015)

    Google Scholar 

  4. Acosta, L., Jiménez, M., Carvajal, R.G., Lopez-Martin, A.J., Ramírez-Angulo, J.: Highly linear tunable CMOS Gm-C lowpass filter. IEEE Trans. Circ. Syst. I Reg. Pap. 56(10), 2145–2158 (2009)

    Google Scholar 

  5. Lo, T.-Y., Hung, C.-C., Ismail, M.: A wide tuning range Gm-C filter for multi-mode CMOS direct conversion wireless receivers. IEEE J. Solid-State Circ. 44(9), 2515–2524 (2009)

    Article  Google Scholar 

  6. Crombez, P., Craninckx, J., Wambacq, P., Steyaert, M.: A 100-kHz to 20-MHz reconfigurable power linearity optimized GM-C biquad in 0.13-μm CMOS. IEEE Trans. Circ. Syst. II Exp. Briefs 55(3), 224–228 (2008)

    Google Scholar 

  7. Glib, J.P.K.: Bluetooth radio architectures. In: IEEE Radio Frequency Integrated Circuit Symposium, Digest of Papers, 11–13 June 2000, pp. 3–6. IEEE (2000)

    Google Scholar 

  8. Elwan, H.O., Younus, M.I., Al-Zaher, H.A., Ismail, M.: A buffer-based baseband analog front end for CMOS Bluetooth receivers. IEEE Trans. Circ. Syst.-II Analog Digit. Process. 49(8), 545–554 (2002)

    Google Scholar 

  9. Johns, D., Martin, K.: Analog Integrated Circuit Design, 1st edn. Wiley, New York (1997)

    MATH  Google Scholar 

  10. Razavi, B.: RF Microelectronics, 1st edn. Prentice Hall, New York (1998)

    Google Scholar 

  11. Ishikuro, H., et al.: A single-chip CMOS Bluetooth transceiver with 1.5 MHz IF and direct modulation transmitter. In: 2003 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, vol. 1, pp. 94–480 (2003)

    Google Scholar 

  12. Andreani, P., Mattisson, S.: On the use of Nauta’s transconductor in low-frequency CMOS Gm-C bandpass filters. IEEE J. Solid-State Circ. 37(2), 114–124 (2002)

    Article  Google Scholar 

  13. Leung, W.Y., Cheng, K.M., Wu, K.-L.: Design and implementation of LTCC filters with enhanced stop-band characteristics for Bluetooth applications. In: 2001 Asia-Pacific Microwave Conference, APMC 2001, 3–6 December 2001, vol. 3, pp. 1008–1011 (2001)

    Google Scholar 

  14. Son, M.H., Lee, S.S., Kim, Y.J.: Low-cost realization of ISM bandpass filters using integrated stripline structures. In: IEEE Radio and Wireless Conference, RAWCON 2000, 10–13 September 2000, pp. 261–264 (2000)

    Google Scholar 

  15. Liu, H., Zhu, X., Lu, M., Sun, Y., Yeo, K.S.: Design of reconfigurable dB-linear variable-gain amplifier and switchable-order GM-C filter in 65-nm CMOS technology. IEEE Trans. Microwave Theory Tech. 67(12), 5148–5158 (2019). https://doi.org/10.1109/TMTT.2019.2947668

  16. Abdolmaleki, M., Dousti, M., Tavakoli, M.B.: Design and simulation of tunable low-pass Gm-C filter with 1 GHz cutoff frequency based on CMOS inventers for high speed telecommunication applications. Analog Integr. Circ. Sig. Process. 100(2), 279–286 (2019). https://doi.org/10.1007/s10470-019-01484-0

    Article  Google Scholar 

  17. Taleja, M.K., Kumar, M.: Bias current effect on gain of a CMOS. In: IEEE International Conference on Advanced Computing & Communication Technologies, pp. 396–397 (2011)

    Google Scholar 

  18. Das,S.S., et al.: An analytical 2-D model of triple metal double gate graded channel junctionless MOSFET with hetero-dielectric gate oxide stack. Solid State Commun. 340, 114521 (2021). ISSN: 0038-1098. https://doi.org/10.1016/j.ssc.2021.114521

  19. Kar, S., Sen, S.: A highly linear CMOS transconductance amplifier in 180 nm process technology. Analog Integr. Circ. Sig. Process. 72, 163–171 (2012). https://doi.org/10.1007/s10470-011-9796-1

    Article  Google Scholar 

  20. Abbasalizadeh, S., Sheikhaei, S., Forouzandeh, B.: A 0.9 V supply OTA in 0.18 nm CMOS technology and its application in realizing a tunable low-pass Gm-C filter for wireless sensor networks. Sci. Res. Circ. Syst. 4, 34–43 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is an intellectual property of Integral University vides the Manuscript Communication no. IU/R & D/2021-MCN0001257. We would like to acknowledge the Integral University, Lucknow, India for providing an opportunity to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittal, N., Khan, I.U., Charan, P. (2022). Design of Power-Efficient Operational Transconductance Amplifier in the Application of Low Pass Filter Using 180 nm CMOS Technology. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds) Innovations in Electrical and Electronic Engineering. ICEEE 2022. Lecture Notes in Electrical Engineering, vol 893. Springer, Singapore. https://doi.org/10.1007/978-981-19-1742-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1742-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1741-7

  • Online ISBN: 978-981-19-1742-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics