Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCE))

  • 307 Accesses

Abstract

The subject of electromagnetic (EM) wave propagation in periodic structures garnered significant attention from applied physicists and engineers, ever since the insightful works carried out by Brillouin almost seven decades back [1]. In fact, it is quite evident that the seeds of the transmission-line-based CRLH (composite right-left handed) metamaterials (a more popular terminology of the twenty-first century) were sown in [1] (see the chapter on “Matrices and the propagation of waves along an electric line” in [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brillouin L (1953) Wave propagation in periodic structures: electric filters and crystal lattices, New York. Dover, NY, USA

    MATH  Google Scholar 

  2. Oliner AA, Hessel A (1959) Guided waves on sinusoidally-modulated reactance surfaces. IRE Trans Antennas Propag 7:201–208

    Article  Google Scholar 

  3. Tamir T, Wang HC, Oliner AA (1964) Wave propagation in sinusoidally stratified dielectric media. IEEE Trans Microw Theory Tech 12:323–335

    Article  Google Scholar 

  4. Seshadri SR (1978) Reflection and transmission coefficients of a periodic dielectric slab. Proc IEEE 66:699–700

    Article  Google Scholar 

  5. Araki K, Itoh T (1981) Analysis of periodic ferrite slab waveguides by means of improved perturbation method. IEEE Trans Microw Theory Tech 29:911–916

    Article  Google Scholar 

  6. Mickelson AR, Jaggard DL (1979) Electromagnetic wave propagation in almost periodic media. IEEE Trans Antennas Propag 27:34–40

    Article  MathSciNet  Google Scholar 

  7. Eleftheriades GV, Balmain KG (2005) Negative refraction metamaterials: fundamental principles and applications, copyright: IEEE. Wiley, Hoboken, NJ

    Book  Google Scholar 

  8. Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications, the engineering approach. Wiley, Hoboken, NJ

    Google Scholar 

  9. Morgenthaler FR (1958) Velocity modulation of electromagnetic waves. IRE Trans Microw Theory Tech 6:167–172

    Article  Google Scholar 

  10. Holberg D, Kunz K (1966) Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans Antennas Propag 14:183–194

    Article  Google Scholar 

  11. Felsen L, Whitman G (1970) Wave propagation in time-varying media. IEEE Trans Antennas Propag 18:242–253

    Article  Google Scholar 

  12. Fante R (1971) Transmission of electromagnetic waves into time-varying media. IEEE Trans Antennas Propag 19:417–424

    Article  Google Scholar 

  13. Shvartsburg AB (2005) Phys Uspekhi 48:797–823

    Article  Google Scholar 

  14. Budko V N (2009) Electromagnetic radiation in a time-varying background medium. Phys Rev A (General Physics) 80, 053817 (2009)

    Google Scholar 

  15. Zurita-Sanchez JR, Halevi P, Cervantes-Gonzalez JC (2009) Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function \(\varepsilon (t)\). Phys Rev A (General Physics) 79, 053821 (2009)

    Google Scholar 

  16. Koutserimpas TT, Fleury R (2018) Electromagnetic waves in a time periodic medium with step-varying refractive index. IEEE Trans Antennas Propag 66:5300–5307

    Article  Google Scholar 

  17. Hayrapetyan AG, Gotte JB, Grigoryan KK, Fritzsche S, Petrosyan RG (2016) Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media. J Quant Spectrosc Radiat Trans 178:158–166

    Article  Google Scholar 

  18. Martinez-Romero JS, Becerra-Fuentes OM, Halevi P (2016) Temporal photonic crystals with modulations of both permittivity and permeability. Phys Rev A 93:063813

    Google Scholar 

  19. Martínez-Romero JS, Halevi P (2017) Standing waves with infinite group velocity in a temporally periodic medium. Phys Rev A 96:063831

    Google Scholar 

  20. Pantazopoulos PA, Stefanou N (2019) Layered optomagnonic structures: Time Floquet scattering-matrix approach. Phys Rev B 99:144415

    Google Scholar 

  21. Koutserimpas TT, Alu A, Fleury R (2018) Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems. Phys Rev A 97:013839

    Google Scholar 

  22. Koutserimpas TT, Fleury R (2018) Zero refractive index in time-Floquet acoustic metamaterials. J Appl Phys 123:091709

    Google Scholar 

  23. Sounas DL, Alu A (2017) Non-reciprocal photonics based on time modulation. Nat Photon 11:774–783, 091709

    Google Scholar 

  24. Koutserimpas TT, Fleury R (2018) Nonreciprocal gain in non-Hermitian time-Floquet systems. Phys Rev Lett 120:087401

    Google Scholar 

  25. Wang YE (2018) On time-modulation-enabled nonreciprocity. IEEE Antennas Wirel Propag Lett 17:1973–1977, 087401

    Google Scholar 

  26. Pacheco-Pena V, Engheta N (2020) Effective medium concept in temporal metamaterials. Nanophotonics 9

    Google Scholar 

  27. Pacheco-Pena V, Engheta N (2020) Anti-reflection temporal coatings. Optica 7:323–331, 087401

    Google Scholar 

  28. Pacheco-Peña V, Engheta N (2020) Temporal aiming. Light Sci Appl 9:129, 087401

    Google Scholar 

  29. Shlivinski A, Hadad Y (2018) Beyond the bode-fano bound: wideband impedance matching for short pulses using temporal switching of transmission-line parameters. Phys Rev Lett 121:204301

    Google Scholar 

  30. Mirmoosa MS, Ptitcyn GA, Asadchy VS, Tretyakov SA (2019) Time-varying reactive elements for extreme accumulation of electromagnetic energy. Phys Rev A (General Physics) 11, 014024 (2019)

    Google Scholar 

  31. Tien PK (1958) Parametric amplification and frequency mixing in propagating circuits. J Appl Phys 29:1347, 204301

    Google Scholar 

  32. Oliner AA, Hessel A (1961) Wave propagation in a medium with a progressive sinusoidal disturbance. IRE Trans Microw Theory Tech 9:337–343, 204301

    Google Scholar 

  33. Cassedy ES, Oliner AA (1963) Dispersion relations in time-space periodic media: Part I-Stable interactions. Proc IEEE 51:1342–1359, 204301

    Google Scholar 

  34. Cassedy ES (1967) Dispersion relations in time-space periodic media Part II-Unstable interactions. Proc IEEE 55:1154–1168, 204301

    Google Scholar 

  35. Bacot V, Labousse M, Eddi A, Fink M, Fort E (2016) Time reversal and holography with spacetime transformations. Nat Phys 12:972–977, 204301

    Google Scholar 

  36. Taravati S, Chamanara N, Caloz C (2017) Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Phys Rev B 96:165144

    Google Scholar 

  37. Caloz C, Deck-Leger Z (2020) Spacetime Metamaterials-Part I: general concepts. IEEE Trans Antennas Propag 68:1569–1582, 165144

    Google Scholar 

  38. Caloz C, Deck-Leger Z (2020) Spacetime Metamaterials-Part II: theory and applications. IEEE Trans Antennas Propag 68:1583–1598, 165144

    Google Scholar 

  39. Ruiz T, Wright C, Smith J (1978) Characteristics of electromagnetic waves propagating in time varying media. IEEE Trans Antennas Propag 26:358–361, 165144

    Google Scholar 

  40. Fedotov FV, Nerukh AG, Benson TM, Sewell P (2003) Investigation of electromagnetic field in a layer with time-varying medium by Volterra integral equation method. J Lightwave Technol 21:305–314, 165144

    Google Scholar 

  41. Biancalana F, Amann A, Uskov AV, O’Reilly E (2007) Dynamics of light propagation in spatiotemporal dielectric structures. Phys Rev E 75:046607

    Google Scholar 

  42. Xiao YZ, Agrawal GP, Maywar DN (2012) Nonlinear pulse propagation: a time-transformation approach. Opt Lett 37:1271–1273, 046607

    Google Scholar 

  43. Koutserimpas TT, Fleury R (2020) Electromagnetic fields in a time-varying medium: exceptional points and operator symmetries. IEEE Trans Antennas Propag 68:6717–6724, 046607

    Google Scholar 

  44. Liu X, McNamara DA (2007) The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media. Int J Infrared Millim Waves 28:759–778, 046607

    Google Scholar 

  45. Shao J, Ma X, Kang Z, Wang J (2020) Numerical treatment for electromagnetic wave in time-variant medium using generalized PITD method. IEEE Microw Wirel Compon Lett 30:4–7, 046607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdeep Sarkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, D. (2022). Introduction. In: FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-19-1630-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1630-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1629-8

  • Online ISBN: 978-981-19-1630-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics