Skip to main content

A Low-Cost Smart Monitoring Device for Demand-Side Response Campaigns

  • Conference paper
  • First Online:
Proceedings of Seventh International Congress on Information and Communication Technology

Abstract

The energy transition requires an increasing penetration of renewable resources, particularly at MV/LV levels. The emerging production scheme is characterized by distributed power plants, imposes a capillary control of production and consumption among the distribution network (DN). The implementation of demand-side response (DSR) campaigns is widely seen as a solution that can increase grid stability, but they require a complex and expensive monitoring infrastructure to select the optimal operating point of the production/consumption systems. This paper suggests a cheap and reliable smart monitoring device based on Raspberry Pi technology. The communication infrastructure adopted in the smart building of ASM S.p.A., the distribution system operator (DSO) of Terni city, shows the feasibility of implementing this prototype on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardito L, Procaccianti G, Menga G, Morisio M (2013) Smart grid technologies in Europe: an overview. Energies 6(1):251–281. https://doi.org/10.3390/EN6010251

    Article  Google Scholar 

  2. Sechilariu M, Wang B, Locment F (2013) Building-integrated microgrid: advanced local energy management for forthcoming smart power grid communication. Energy Build 59:236–243. https://doi.org/10.1016/J.ENBUILD.2012.12.039

    Article  Google Scholar 

  3. Li F et al (2010) Smart transmission grid: vision and framework. IEEE Trans Smart Grid 1(2):168–177. https://doi.org/10.1109/TSG.2010.2053726

    Article  Google Scholar 

  4. Siano P (2014) Demand response and smart grids—a survey. Renew Sustain Energy Rev 30:461–478. https://doi.org/10.1016/j.rser.2013.10.022

    Article  Google Scholar 

  5. Fang X, Misra S, Xue G, Yang D (2012) Smart grid—the new and improved power grid: a survey. IEEE Commun Surveys Tutorials 14(4):944–980. https://doi.org/10.1109/SURV.2011.101911.00087

    Article  Google Scholar 

  6. Deblasio R, Tom C (2008) “Standards for the smart grid.” In 2008 IEEE energy 2030 conference, pp 1–7

    Google Scholar 

  7. Sha K, Alatrash N, Wang Z (2021) “A secure and efficient framework to read isolated smart grid devices”. IEEE Trans Smart Grid 8(6). Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/7419260/

  8. Morello R, de Capua C, Fulco G, Mukhopadhyay SC (2017) A smart power meter to monitor energy flow in smart grids: the role of advanced sensing and iot in the electric grid of the future. IEEE Sens J 17(23):7828–7837. https://doi.org/10.1109/JSEN.2017.2760014

    Article  Google Scholar 

  9. Sharma K, Mohan Saini L (2015) Performance analysis of smart metering for smart grid: an overview. Renew Sustain Energy Rev 49:720–735. https://doi.org/10.1016/J.RSER.2015.04.170

    Article  Google Scholar 

  10. Uludag S, Lui KS, Ren W, Nahrstedt K (2026) “Secure and scalable data collection with time minimization in the smart grid.” IEEE Trans Smart Grid 7(1). Accessed 04 Oct 04 2021. [Online]. Available: https://ieeexplore.ieee.org/document/7061965/

  11. Samson JB, Fredrick KA, Sathiya MN, Joy RC, Wesley WJ, Samuel SS (2019) “Smart energy monitoring using raspberrypi.” Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/8819743/

  12. Ashok K, Li D, Divan D, Gebraeel N (2020) “Distribution transformer health monitoring using smart meter data.” Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/9087641/

  13. Kunicki M, Borucki S, Zmarzły D, Frymus J (2020) Data acquisition system for on-line temperature monitoring in power transformers. Measurement 161:107909. https://doi.org/10.1016/J.MEASUREMENT.2020.107909

    Article  Google Scholar 

  14. Moghaddass R, Wang J (2018) “A hierarchical framework for smart grid anomaly detection using large-scale smart meter data.” IEEE Trans Smart Grid 9(6). Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/7908945/

  15. Cataliotti A, Cosentino V, di Cara D, Tinè G (2016) “LV Measurement device placement for load flow analysis in mv smart grids.” IEEE Trans Instrument Measure 65(5). Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore.ieee.org/document/7321815/

  16. Albu MM, Sănduleac M, Stănescu C (017) “Syncretic Use of smart meters for power quality monitoring in emerging networks.” IEEE Trans Smart Grid 8(1). Accessed 04 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/7536160/

  17. Elma O, Selamoğullari US (2017) “An overview of demand response applications under smart grid concept.” Accessed 05 Oct 2021. [Online]. Available: https://ieeexplore.ieee.org/document/7935802/

  18. Samad T, Koch E, Stluka P (2016) “Automated demand response for smart buildings and microgrids: the state of the practice and research challenges.” Proc IEEE 104(4). Accessed 05 Oct 2021. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.uniroma1.it/document/7416149/

  19. Bahrami S, Sheikhi A (2016) “From demand response in smart grid toward integrated demand response in smart energy hub.” IEEE Trans Smart Grid 7(2). Accessed 05 Oct 2021. [Online]. Available: https://ieeexplore.ieee.org/document/7206579/

  20. Ko W, Vettikalladi H, Song SH, Choi HJ (2020) Implementation of a demand-side management solution for South Korea’s demand response program. Appl Sci 10(5):1751. https://doi.org/10.3390/APP10051751

    Article  Google Scholar 

  21. Hoosain MS, Paul BS (2017) “Smart homes: a domestic demand response and demand side energy management system for future smart grids.” Accessed 05 Oct 2021. [Online]. Available: https://ieeexplore.ieee.org/document/7931852/

  22. Latifi M, Khalili A, Rastegarnia A, Bazzi WM, Sanei S (2020) A robust scalable demand- side management based on diffusion-admm strategy for smart grid. IEEE Internet Things J 7(4):3363–3377. https://doi.org/10.1109/JIOT.2020.2968539

    Article  Google Scholar 

  23. Minchala-Avila LI, Armijos J, Pesántez D, Zhang Y (2016) Design and implementation of a smart meter with demand response capabilities. Energy Procedia 103:195–200. https://doi.org/10.1016/J.EGYPRO.2016.11.272

    Article  Google Scholar 

  24. Li WT et al (2015) Demand response management for residential smart grid: from theory to practice. IEEE Access 3:2431–2440. https://doi.org/10.1109/ACCESS.2015.2503379

    Article  Google Scholar 

  25. IoT-NGIN European Project website https://iot-ngin.eu

  26. Merchant HK, Ahire DD (2017) “Industrial automation using IoT with raspberry pi,” 2017

    Google Scholar 

  27. Raspberry Pi website, https://www.raspberrypi.com

  28. Sensor Hat description, https://projects.raspberrypi.org/en/projects/getting-started-with-the-sense-hat

  29. Voltage sensor description, https://innovatorsguru.com/zmpt101b/

  30. Rogowski coil description, https://www.cnzentar.com/rogowski-coils/?gclid=CjwKCAjwwsmLBhACEiwANq-tXKDMavNPLVIz2TVIOqsaK8QKpUp44rHFiRSL4Hd8rZi0_iQ27qbRoCrL4QAvD_BwE

  31. ADS1115 analog to digital converter description, https://www.adafruit.com/product/1085

  32. Carere F et al (2020) “Flexibility—enabling technologies using electric vehicles.” In 2020 IEEE international conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe), pp 1–6. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160781.

  33. Carere F et al (2021) Electric vehicle charging rescheduling to mitigate local congestions in the distribution system. IEEE Madrid PowerTech 2021:1–6. https://doi.org/10.1109/PowerTech46648.2021.9494882

    Article  Google Scholar 

  34. Koukaras P, Gkaidatzis P, Bezas N, Bragatto T, Carere F, Santori F, Antal M, Ioannidis D, Tjortjis C, Tzovaras D (2021) A tri-layer optimization framework for day-ahead energy scheduling based on cost and discomfort minimization. Energies 14:3599. https://doi.org/10.3390/en14123599

    Article  Google Scholar 

  35. Antal C, Cioara T, Antal M, Mihailescu V, Mitrea D, Anghel I, Salomie I, Raveduto G, Bertoncini M, Croce V, Bragatto T, Carere F, Bellesini F (2021) “Blockchain based decentralized local energy flexibility market”. Energy Reports 7:5269–5288, ISSN 2352–4847, https://doi.org/10.1016/j.egyr.2021.08.118

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the IoT-NGIN project grant agreement No 957246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Carere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geri, A. et al. (2023). A Low-Cost Smart Monitoring Device for Demand-Side Response Campaigns. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 448. Springer, Singapore. https://doi.org/10.1007/978-981-19-1610-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1610-6_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1609-0

  • Online ISBN: 978-981-19-1610-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics