Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 448))

  • 454 Accesses

Abstract

Arm-Z is a hyper-redundant manipulator based on a sequence of linearly joined identical modules. Each module has only one degree of freedom—a twist relative to the previous module. Arm-Z can be potentially economical, as the modules can be mass-produced. Arm-Z is also robust, as the malfunctioning module can be replaced. Moreover, if some modules malfunction, the device can still execute tasks with certain accuracy. However, the disadvantage of Arm-Z is a non-intuitive and difficult control. This paper presents a concept of a modular tracking device comprised of four identical modules. As an example, the Sun-tracking setup is used with possible application for solar energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray J (1946) The mechanism of locomotion in snakes. J Exp Biol 23(2):101–120

    Article  Google Scholar 

  2. Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press

    Google Scholar 

  3. Ning K, Wörgötter F (2009) A novel concept for building a hyper-redundant chain robot. IEEE Trans Robot 25(6):1237–1248

    Article  Google Scholar 

  4. Rolf M, Steil JJ (2014) Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. IEEE Trans Neural Netw Learn Syst 25(6):1147–1160

    Article  Google Scholar 

  5. Melingui A et al (2014) Qualitative approach for forward kinematic modeling of a compact bionic handling assistant trunk. IFAC Proc 47(3):9353–9358

    Google Scholar 

  6. Falkenhahn V, Hildebrandt A, Neumann R, Sawodny O (2017) Dynamic control of the bionic handling assistant. IEEE/ASME Trans Mechatron 22(1):6–17

    Article  Google Scholar 

  7. Murray RM, Li Z, Shankar Sastry S, Shankara Sastry S (1994) A mathematical introduction to robotic manipulation. CRC Press

    Google Scholar 

  8. Chirikjian GS, Burdick JW (1994) A hyper-redundant manipulator. IEEE Robot Automat Mag 1(4):22–29

    Article  Google Scholar 

  9. Torstenfelt B, Klarbring A (2006) Structural optimization of modular product families with application to car space frame structures. Struct Multidiscip O 32(2):133–140

    Article  Google Scholar 

  10. Tugilimana A et al (2017) Conceptual design of modular bridges including layout optimization and component reusability. J Bridge Eng 22 (11)

    Google Scholar 

  11. Fuhs W, Stachel H (1988) Circular pipe-connections. Comput Graph 12(1):53–57

    Article  Google Scholar 

  12. Zawidzki M, Nishinari K (2013) Modular pipe-z system for three-dimensional knots. J Geometry Graph 17(1):81–87

    MathSciNet  MATH  Google Scholar 

  13. Zawidzki M, Nagakura T (2014) Arm-Z: a modular virtual manipulative. In: Schröcker H-P (ed) Proceedings of the 16th international conference on geometry and graphics, pp 75–80

    Google Scholar 

  14. Coumans E, Bai Y, Pybullet, a python module for physics simulation for games, robotics and machine learning. http://pybullet.org, 2016–2021

  15. Luh JYS, Walker MW, Paul RPC (1980) On-line computational scheme for mechanical manipulators. J Dyn Syst Measur Control 102(2):69–76. https://doi.org/10.1115/1.3149599. ISSN 0022-0434

  16. Xiang Y, Sun DY, Fan W, Gong XG (1997) Generalized simulated annealing algorithm and its application to the thomson model. Phys Lett A 233(3):216–220. https://doi.org/10.1016/S0375-9601(97)00474-X. ISSN 0375-9601

  17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020) SciPy 1.0.: fundamental algorithms for scientific computing in python. SciPy 1.0. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

Download references

Acknowledgements

This research is a part of the project titled Arm-Z: an extremely modular hyperredundant low-cost manipulator—development of control methods and efficiency analysis and funded by OPUS 17 research grant No. 2019/33/B/ST8/02791 supported by the National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela Zawidzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zawidzka, E., Szklarski, J., Zawidzki, M. (2023). Arm-Z as a Modular Tracking Device. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 448. Springer, Singapore. https://doi.org/10.1007/978-981-19-1610-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1610-6_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1609-0

  • Online ISBN: 978-981-19-1610-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics