Skip to main content

HDL and Therapy

  • Chapter
  • First Online:
HDL Metabolism and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1377))

Abstract

A wealth of evidence indicates that high-density lipoprotein assumes the unique antiatherosclerosis and other cardioprotective properties. Based on that, HDL-C has been considered as a promising therapy target to reduce the cardiovascular diseases. Recombinant HDL (rHDL) and apolipoprotein mimetic peptides emerge in recent years and have great potential in the future. Here we discussed the pleiotropic therapeutic effect of rHDL based on the effects of atherogenic, angiogenesis, platelet, vascular, and Alzheimer’s disease. On the other hand, rHDL not only plays the key role as the major protein component of HDL, it is also used as a nanovector in antiatherosclerotic, antitumor, cardiovascular diagnosing and other therapeutic areas. Synthetic apolipoprotein mimetic peptides like apoA-I and and apoE mimetics have undergone clinical assessment, and we have also reviewed the advances of clinical trials and gave an outlook for the therapy of rHDL and mimetic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briel M, Ferreira-Gonzalez I, You JJ et al (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kontush A, Chapman MJ (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 58(3):342–374

    Article  CAS  PubMed  Google Scholar 

  3. Darabi M, Guillas-Baudouin I, Le Goff W et al (2016) Therapeutic applications of reconstituted HDL: when structure meets function. Pharmacol Ther 157:28–42

    Article  CAS  PubMed  Google Scholar 

  4. Wu BJ, Chen K, Shrestha S et al (2013) High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3beta-hydroxysteroid-Delta24 reductase expression and inducing heme oxygenase-1. Circ Res 112(2):278–288

    Article  CAS  PubMed  Google Scholar 

  5. Chenevard R, Hurlimann D, Spieker L et al (2012) Reconstituted HDL in acute coronary syndromes. Cardiovasc Ther 30(2):e51–e57

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls SJ, Andrews J, Kastelein JJP et al (2018) Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol 3(9):815–822

    Article  PubMed  PubMed Central  Google Scholar 

  7. Di Bartolo BA, Vanags LZ, Tan JT et al (2011) The apolipoprotein A-I mimetic peptide, ETC-642, reduces chronic vascular inflammation in the rabbit. Lipids Health Dis 10:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. He J, Yang Y, Zhou X et al (2020) Shuttle/sink model composed of beta-cyclodextrin and simvastatin-loaded discoidal reconstituted high-density lipoprotein for enhanced cholesterol efflux and drug uptake in macrophage/foam cells. J Mater Chem B 8(7):1496–1506

    Article  CAS  PubMed  Google Scholar 

  9. Schwendeman A, Sviridov DO, Yuan W et al (2015) The effect of phospholipid composition of reconstituted HDL on its cholesterol efflux and anti-inflammatory properties. J Lipid Res 56(9):1727–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoang A, Drew BG, Low H et al (2012) Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur Heart J 33(5):657–665

    Article  CAS  PubMed  Google Scholar 

  11. Patel S, Drew BG, Nakhla S et al (2009) Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J Am Coll Cardiol 53(11):962–971

    Article  CAS  PubMed  Google Scholar 

  12. Sumi M, Sata M, Miura S et al (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27(4):813–818

    Article  CAS  PubMed  Google Scholar 

  13. Tan JT, Prosser HC, Vanags LZ et al (2014) High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1alpha. FASEB J 28(1):206–217

    Article  CAS  PubMed  Google Scholar 

  14. Tan JT, Prosser HC, Dunn LL et al (2016) High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I. Diabetes 65(10):3091–3103

    Article  CAS  PubMed  Google Scholar 

  15. Hourigan ST, Solly EL, Nankivell VA et al (2018) The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis. Sci Rep 8(1):13596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Koudinov AR, Berezov TT, Kumar A et al (1998) Alzheimer’s amyloid beta interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin Chim Acta 270(2):75–84

    Article  CAS  PubMed  Google Scholar 

  17. Song Q, Huang M, Yao L et al (2014) Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8(3):2345–2359

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-De-Retana S, Cano-Sarabia M, Marazuela P et al (2017) Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral beta-amyloidosis. Sci Rep 7(1):14637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang H, Zhao Y, Yu M et al (2019) Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy. J Control Release 296:14–28

    Article  CAS  PubMed  Google Scholar 

  20. Frias MA, James RW, Gerber-Wicht C et al (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82(2):313–323

    Article  CAS  PubMed  Google Scholar 

  21. Borthwick F, Warnakula S, Mangat R et al (2012) ApoA-1 infusion reduces arterial cholesterol and myocardial lesions in a rat model of cardiac dysfunction and insulin resistance. Atherosclerosis 222(2):402–408

    Article  CAS  PubMed  Google Scholar 

  22. Den Ruijter HM, Franssen R, Verkerk AO et al (2011) Reconstituted high-density lipoprotein shortens cardiac repolarization. J Am Coll Cardiol 58(1):40–44

    Article  CAS  Google Scholar 

  23. Imaizumi S, Miura S, Nakamura K et al (2008) Antiarrhythmogenic effect of reconstituted high-density lipoprotein against ischemia/reperfusion in rats. J Am Coll Cardiol 51(16):1604–1612

    Article  CAS  PubMed  Google Scholar 

  24. Pajkrt D, Lerch PG, Van Der Poll T et al (1997) Differential effects of reconstituted high-density lipoprotein on coagulation, fibrinolysis and platelet activation during human endotoxemia. Thromb Haemost 77(2):303–307

    Article  CAS  PubMed  Google Scholar 

  25. Calkin AC, Drew BG, Ono A et al (2009) Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120(21):2095–2104

    Article  CAS  PubMed  Google Scholar 

  26. Vanags LZ, Tan JTM, Galougahi KK et al (2018) Apolipoprotein A-I reduces in-stent restenosis and platelet activation and alters Neointimal cellular phenotype. JACC Basic Transl Sci 3(2):200–209

    Article  PubMed  PubMed Central  Google Scholar 

  27. Drew BG, Carey AL, Natoli AK et al (2011) Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus. J Lipid Res 52(3):572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fryirs MA, Barter PJ, Appavoo M et al (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol 30(8):1642–1648

    Article  CAS  PubMed  Google Scholar 

  29. Heywood SE, Richart AL, Henstridge DC et al (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9(411)

    Google Scholar 

  30. Gebhard C, Rheaume E, Berry C et al (2017) Beneficial effects of reconstituted high-density lipoprotein (rHDL) on circulating CD34+ cells in patients after an acute coronary syndrome. PLoS One 12(1):e0168448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Reijers JAA, Kallend DG, Malone KE et al (2017) MDCO-216 does not induce adverse Immunostimulation, in contrast to its predecessor ETC-216. Cardiovasc Drugs Ther 31(4):381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholls SJ, Puri R, Ballantyne CM et al (2018) Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol 3(9):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tardif JC, Ballantyne CM, Barter P et al (2014) Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J 35(46):3277–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson CM, Kerneis M, Yee MK et al (2019) The CSL112-2001 trial: safety and tolerability of multiple doses of CSL112 (apolipoprotein A-I [human]), an intravenous formulation of plasma-derived apolipoprotein A-I, among subjects with moderate renal impairment after acute myocardial infarction. Am Heart J 208:81–90

    Article  CAS  PubMed  Google Scholar 

  35. Diditchenko S, Gille A, Pragst I et al (2013) Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler Thromb Vasc Biol 33(9):2202–2211

    Article  CAS  PubMed  Google Scholar 

  36. Didichenko SA, Navdaev AV, Cukier AM et al (2016) Enhanced HDL functionality in small HDL species produced upon remodeling of HDL by reconstituted HDL, CSL112: effects on cholesterol efflux, anti-inflammatory and antioxidative activity. Circ Res 119(6):751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simonsen JB (2016) Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform - a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. Nanomedicine 12(7):2161–2179

    Article  CAS  PubMed  Google Scholar 

  38. Frias JC, Ma Y, Williams KJ et al (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6(10):2220–2224

    Article  CAS  PubMed  Google Scholar 

  39. Chen W, Vucic E, Leupold E et al (2008) Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging 3(6):233–242

    Article  CAS  PubMed  Google Scholar 

  40. Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430(2):218–228

    Article  CAS  PubMed  Google Scholar 

  41. Cai Y, Liu Y, Culhane KJ et al (2017) Purification of family B G protein-coupled receptors using nanodiscs: application to human glucagon-like peptide-1 receptor. PLoS One 12(6):e0179568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ding Y, Wang Y, Zhou J et al (2014) Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials 35(25):7214–7227

    Article  CAS  PubMed  Google Scholar 

  43. Jiang C, Qi Z, He W et al (2019) Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression. J Control Release 308:71–85

    Article  CAS  PubMed  Google Scholar 

  44. Ding Y, Wang W, Feng M et al (2012) A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 33(34):8893–8905

    Article  CAS  PubMed  Google Scholar 

  45. Zhao Y, Gao H, He J et al (2018) Co-delivery of LOX-1 siRNA and statin to endothelial cells and macrophages in the atherosclerotic lesions by a dual-targeting core-shell nanoplatform: a dual cell therapy to regress plaques. J Control Release 283:241–260

    Article  CAS  PubMed  Google Scholar 

  46. Zanoni P, Von Eckardstein A (2020) Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 31(2):62–70

    Article  CAS  PubMed  Google Scholar 

  47. Lou B, Liao XL, Wu MP et al (2005) High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells. World J Gastroenterol 11(7):954–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Chen B (2010) Recombinant high density lipoprotein reconstituted with apolipoprotein AI cysteine mutants as delivery vehicles for 10-hydroxycamptothecin. Cancer Lett 298(1):26–33

    Article  CAS  PubMed  Google Scholar 

  49. Gong M, Zhang Q, Zhao Q et al (2019) Development of synthetic high-density lipoprotein-based ApoA-I mimetic peptide-loaded docetaxel as a drug delivery nanocarrier for breast cancer chemotherapy. Drug Deliv 26(1):708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang W, He H, Liu J et al (2013) Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins. Biomaterials 34(1):306–319

    Article  CAS  PubMed  Google Scholar 

  51. Liu L, He H, Zhang M et al (2014) Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 35(27):8002–8014

    Article  CAS  PubMed  Google Scholar 

  52. Li M, Su Y, Zhang F et al (2018) A dual-targeting reconstituted high density lipoprotein leveraging the synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma therapy. Acta Biomater 75:413–426

    Article  CAS  PubMed  Google Scholar 

  53. White CR, Garber DW, Anantharamaiah GM (2014) Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res 55(10):2007–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anantharamaiah GM, Garber DW, White CR (2016) Apolipoprotein mimetic peptides as modulators of lipoprotein function. Protein Pept Lett 23(11):1024–1031

    Article  CAS  PubMed  Google Scholar 

  55. Kawahara H, Miyashita N, Tachibana K et al (2019) A photo-activatable peptide mimicking functions of apolipoprotein A-I. Biol Pharm Bull 42(6):1019–1024

    Article  CAS  PubMed  Google Scholar 

  56. Getz GS, Reardon CA (2014) The structure/function of apoprotein A-I mimetic peptides: an update. Curr Opin Endocrinol Diabetes Obes 21(2):129–133

    Article  CAS  PubMed  Google Scholar 

  57. Wang W, Zhu X (2018) HDL mimetic peptides affect apolipoprotein E metabolism: equal supplement or functional enhancer?: an editorial for ‘High-density lipoprotein mimetic peptide 4F mitigates amyloid-beta-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia’ on page 647. J Neurochem 147(5):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Handattu SP, Garber DW, Monroe CE et al (2009) Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer’s disease. Neurobiol Dis 34(3):525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sahoo BR, Bekier ME, Liu Z 2nd et al (2020) Structural interaction of apolipoprotein A-I mimetic peptide with amyloid-beta generates toxic hetero-oligomers. J Mol Biol 432(4):1020–1034

    Article  CAS  PubMed  Google Scholar 

  60. He D, Zhao M, Wu C et al (2018) Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 15:228–242

    Article  CAS  PubMed  Google Scholar 

  61. Moreira RS, Irigoyen MC, Capcha JMC et al (2020) Synthetic apolipoprotein A-I mimetic peptide 4F protects hearts and kidneys after myocardial infarction. Am J Physiol Regul Integr Comp Physiol 318(3):R529–R544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yao X, Gordon EM, Figueroa DM et al (2016) Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease. Am J Respir Cell Mol Biol 55(2):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai C, Yao X, Keeran KJ et al (2012) Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism. Am J Respir Cell Mol Biol 47(2):186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dai C, Yao X, Vaisman B et al (2014) ATP-binding cassette transporter 1 attenuates ovalbumin-induced neutrophilic airway inflammation. Am J Respir Cell Mol Biol 51(5):626–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yao X, Dai C, Fredriksson K et al (2011) 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. J Immunol 186(1):576–583

    Article  CAS  PubMed  Google Scholar 

  66. Nandedkar SD, Weihrauch D, Xu H et al (2011) D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J Lipid Res 52(3):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barochia AV, Kaler M, Cuento RA et al (2015) Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma. Am J Respir Crit Care Med 191(9):990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nicholas BL, Skipp P, Barton S et al (2010) Identification of lipocalin and apolipoprotein A1 as biomarkers of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(10):1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma J, Liao XL, Lou B et al (2004) Role of apolipoprotein A-I in protecting against endotoxin toxicity. Acta Biochim Biophys Sin Shanghai 36(6):419–424

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, Dong JB, Wu MP (2008) Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur J Pharmacol 590(1–3):417–422

    Article  CAS  PubMed  Google Scholar 

  71. Sharifov OF, Xu X, Gaggar A et al (2013) Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One 8(5):e64486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kwon WY, Suh GJ, Kim KS et al (2012) 4F, apolipoprotein AI mimetic peptide, attenuates acute lung injury and improves survival in endotoxemic rats. J Trauma Acute Care Surg 72(6):1576–1583

    Article  CAS  PubMed  Google Scholar 

  73. Yang N, Tian H, Zhan E et al (2019) Reverse-D-4F improves endothelial progenitor cell function and attenuates LPS-induced acute lung injury. Respir Res 20(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi H, Huang H, Pu J et al (2018) Decreased pretherapy serum apolipoprotein A-I is associated with extent of metastasis and poor prognosis of non-small-cell lung cancer. Onco Targets Ther 11:6995–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu J, Zhang C, Zhang G et al (2018) Association between pretreatment serum apolipoprotein A1 and prognosis of solid tumors in Chinese population: a systematic review and meta-analysis. Cell Physiol Biochem 51(2):575–588

    Article  CAS  PubMed  Google Scholar 

  76. Chandler PD, Song Y, Lin J et al (2016) Lipid biomarkers and long-term risk of cancer in the Women’s health study. Am J Clin Nutr 103(6):1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chattopadhyay A, Yang X, Mukherjee P et al (2018) Treating the intestine with Oral ApoA-I mimetic Tg6F reduces tumor burden in mouse models of metastatic lung cancer. Sci Rep 8(1):9032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sharma S, Umar S, Potus F et al (2014) Apolipoprotein A-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation 130(9):776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee E, Lee EJ, Kim HJ et al (2013) Overexpression of apolipoprotein A1 in the lung abrogates fibrosis in experimental silicosis. PLoS One 8(2):e55827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song X, Shi Y, You J et al (2019) D-4F, an apolipoprotein A-I mimetic, suppresses IL-4 induced macrophage alternative activation and pro-fibrotic TGF-beta1 expression. Pharm Biol 57(1):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Lenten BJ, Wagner AC, Nayak DP et al (2001) High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection. Circulation 103(18):2283–2288

    Article  PubMed  Google Scholar 

  82. Van Lenten BJ, Wagner AC, Anantharamaiah GM et al (2002) Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation 106(9):1127–1132

    Article  PubMed  Google Scholar 

  83. Van Lenten BJ, Wagner AC, Navab M et al (2004) D-4F, an apolipoprotein A-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type II pneumocytes. Circulation 110(20):3252–3258

    Article  PubMed  CAS  Google Scholar 

  84. Handattu SP, Garber DW, Horn DC et al (2007) ApoA-I mimetic peptides with differing ability to inhibit atherosclerosis also exhibit differences in their interactions with membrane bilayers. J Biol Chem 282(3):1980–1988

    Article  CAS  PubMed  Google Scholar 

  85. Eriksson M, Carlson LA, Miettinen TA et al (1999) Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. potential reverse cholesterol transport in humans. Circulation 100(6):594–598

    Article  CAS  PubMed  Google Scholar 

  86. Tabet F, Remaley AT, Segaliny AI et al (2010) The 5A apolipoprotein A-I mimetic peptide displays antiinflammatory and antioxidant properties in vivo and in vitro. Arterioscler Thromb Vasc Biol 30(2):246–252

    Article  CAS  PubMed  Google Scholar 

  87. Meriwether D, Sulaiman D, Volpe C et al (2019) Apolipoprotein A-I mimetics mitigate intestinal inflammation in COX2-dependent inflammatory bowel disease model. J Clin Invest 129(9):3670–3685

    Article  PubMed  PubMed Central  Google Scholar 

  88. Iwata A, Miura S, Zhang B et al (2011) Antiatherogenic effects of newly developed apolipoprotein A-I mimetic peptide/phospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits. Atherosclerosis 218(2):300–307

    Article  CAS  PubMed  Google Scholar 

  89. Mcgrath KC, Li X, Twigg SM et al (2020) Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One 15(1):e0226931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Du L, Qu X, Zheng H et al (2013) Reverse apolipoprotein A-I mimetic peptide R-D4F inhibits neointimal formation following carotid artery ligation in mice. Am J Pathol 182(5):1932–1939

    Article  CAS  PubMed  Google Scholar 

  91. Qin S, Kamanna VS, Lai JH et al (2012) Reverse D4F, an apolipoprotein-AI mimetic peptide, inhibits atherosclerosis in ApoE-null mice. J Cardiovasc Pharmacol Ther 17(3):334–343

    Article  PubMed  Google Scholar 

  92. Nana Y, Peng J, Jianlin Z et al (2015) Reverse-D-4F increases the number of endothelial progenitor cells and improves endothelial progenitor cell dysfunctions in high fat diet mice. PLoS One 10(9):e0138832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gupta H, White CR, Handattu S et al (2005) Apolipoprotein E mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation 111(23):3112–3118

    Article  CAS  PubMed  Google Scholar 

  94. Ghosal K, Stathopoulos A, Thomas D et al (2013) The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. Neurodegener Dis 12(1):51–58

    Article  CAS  PubMed  Google Scholar 

  95. Datta G, Chaddha M, Handattu SP et al (2010) ApoE mimetic peptide reduces plasma lipid hydroperoxide content with a concomitant increase in HDL paraoxonase activity. Adv Exp Med Biol 660:1–4

    Article  CAS  PubMed  Google Scholar 

  96. Wang L, Hou H, Zi D et al (2019) Novel apoE receptor mimetics reduce LPS-induced microglial inflammation. Am J Transl Res 11(8):5076–5085

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Handattu SP, Monroe CE, Nayyar G et al (2013) In vivo and in vitro effects of an apolipoprotein e mimetic peptide on amyloid-beta pathology. J Alzheimers Dis 36(2):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pang J, Chen Y, Kuai L et al (2017) Inhibition of blood-brain barrier disruption by an apolipoprotein E-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl Stroke Res 8(3):257–272

    Article  CAS  PubMed  Google Scholar 

  99. Cao F, Jiang Y, Wu Y et al (2016) Apolipoprotein E-mimetic COG1410 reduces acute Vasogenic edema following traumatic brain injury. J Neurotrauma 33(2):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zheng Y, Patel AB, Narayanaswami V et al (2013) Retention of alpha-helical structure by HDL mimetic peptide ATI-5261 upon extensive dilution represents an important determinant for stimulating ABCA1 cholesterol efflux with high efficiency. Biochem Biophys Res Commun 441(1):71–76

    Article  CAS  PubMed  Google Scholar 

  101. Morgantini C, Imaizumi S, Grijalva V et al (2010) Apolipoprotein A-I mimetic peptides prevent atherosclerosis development and reduce plaque inflammation in a murine model of diabetes. Diabetes 59:3223–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen X, Burton C, Song X et al (2009) An apoA-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration. Int J Biol Sci 5:489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Datta G, Gupta H, Zhang Z et al (2011) HDL mimetic peptide administration improves left ventricular filling and cardiac output in lipopolysaccharide-treated rats. J Clin Exp Cardiolog 2:undefined

    Article  CAS  Google Scholar 

  104. Kruger AL, Peterson S, Turkseven S et al (2005) D-4F induces heme oxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes. Circulation 111:3126–3134

    Article  CAS  PubMed  Google Scholar 

  105. Navab M, Anantharamaiah GM, Hama S et al (2005) D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25:1426–1432

    Article  CAS  PubMed  Google Scholar 

  106. Paul S, Gangwar A, Bhargava K et al (2021) D4F prophylaxis enables redox and energy homeostasis while preventing inflammation during hypoxia exposure. Biomed Pharmacother 133:111083

    Article  CAS  PubMed  Google Scholar 

  107. Anantharamaiah GM, Garber DW, Goldberg D et al (2018) Novel fatty acyl apoE mimetic peptides have increased potency to reduce plasma cholesterol in mice and macaques. J Lipid Res 59:2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rivas-Urbina A, Rull A, Montoliu-Gaya L et al (2020) Low-density lipoprotein aggregation is inhibited by apolipoprotein J-derived mimetic peptide D-[113-122]apoJ. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158541

    Article  CAS  PubMed  Google Scholar 

  109. Valanti EK, Chroni A, Sanoudou D (2019) The future of apolipoprotein E mimetic peptides in the prevention of cardiovascular disease. Curr Opin Lipidol 30(4):326–341

    Article  CAS  PubMed  Google Scholar 

  110. Nicholls SJ, Andrews J, Kastelein JJ et al (2018) Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol 3:815–822

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kataoka Y, Andrews J, Duong M et al (2017) Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden. Cardiovasc Diagn Ther 7:252–263

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tardif JC, Grégoire J, L’Allier PL et al (2007) Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297:1675–1682

    Article  PubMed  Google Scholar 

  113. Tanaka S, Genève C, Zappella N et al (2020) Reconstituted high-density lipoprotein therapy improves survival in mouse models of sepsis. Anesthesiology 132:825-838.CSL_

    Article  CAS  Google Scholar 

  114. Michael GC, Korjian S, Tricoci P et al (2016) Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation 134(24):1918–1930

    Article  CAS  Google Scholar 

  115. Montoliu-Gaya L, Guell-Bosch J, Esquerda-Canals G et al (2018) Differential effects of apoE and apoJ mimetic peptides on the action of an anti-Abeta scFv in 3xTg-AD mice. Biochem Pharmacol 155:380–392

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, K., Xie, X., Guo, Y. (2022). HDL and Therapy. In: Zheng, L. (eds) HDL Metabolism and Diseases. Advances in Experimental Medicine and Biology, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-19-1592-5_14

Download citation

Publish with us

Policies and ethics