Skip to main content

Knowledge Measure-Based q-Rung Orthopair Fuzzy Inventory Model

  • Chapter
  • First Online:
q-Rung Orthopair Fuzzy Sets
  • 270 Accesses

Abstract

As a generalization of intuitionistic fuzzy set and Pythagorean fuzzy set, the q-Rung Orthopair Fuzzy Set (qROFS) and its application are implemented in some decision-making problems. So far the notion of qROFS is not yet applied in any inventory management problems. This chapter analyzed an inventory model under the q-rung orthopair fuzzy environment and utilized the knowledge measure of qROFS to the proposed model. This study explores an economic order quantity model with faulty products and screening errors. To satisfy the customers’ demand with perfect items, the proposed research utilized the product warranty claim strategy from the supplier. Since some of the faulty products are returned from the supplier without being replaced as good ones, this study examines under two cases say, the warranty unclaimed products are restored by mending option and the warranty unclaimed products are recovered by the emergency purchase option. For both cases, the q-Rung Orthopair Fuzzy (qROF) inventory model is framed by presuming the proportion of faulty products and the proportion of misclassification errors as q-Rung Orthopair Fuzzy Variables (qROFVs). The Knowledge Measure-based q-Rung Orthopair Fuzzy (KM-qROF) inventory model is proposed by computing the knowledge measure of qROFVs. The proposed model is illustrated with a numerical example along with the sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.I. Ali, Another view on q‐rung orthopair fuzzy sets. Int. J. Intell. Syst. 33, 2139–2153 (2018). https://doi.org/10. 1002/int.22007

  2. K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  3. B. Farhadinia, H. Liao, Score-based multiple criteria decision making process by using p-rung orthopair fuzzy sets. INFORMATICA (2020). doi:https://doi.org/10.15388/20-INFOR412

  4. H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties. Neural Comput. Appl. 32, 15077–15099 (2020). https://doi.org/10.1007/s00521-020-04859-x

    Article  Google Scholar 

  5. H. Garg, S.M. Chen, Multiattribute group decision making based on neutrality aggregation operators of q- rung orthopair fuzzy sets. Inf Sci. 517, 427–447 (2020)

    Article  MathSciNet  Google Scholar 

  6. H. Garg, J. Gwak, T. Mahmood, Z. Ali, Power aggregation operators and vikor methods for complex q-rung orthopair fuzzy sets and their applications. Mathematics 8, 538 (2020)

    Article  Google Scholar 

  7. H. Garg, A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int J Intell Syst. 36, 526–557 (2021). https://doi.org/10.1002/int.22308

    Article  Google Scholar 

  8. H. Garg, CN- qq-ROFS: Connection number-based q-rung orthopair fuzzy set and their application to decision-making process. Int. J. Intell. Syst. 36(7), 3106–3143 (2021). doi:https://doi.org/10.1002/int.22406

  9. H. Garg, New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process. Neural Comput. Appl. 33(20), 13937–13963 (2021). https://doi.org/10.1007/s00521-021-06036-0

    Article  Google Scholar 

  10. J.T. Hsu, L.F. Hsu, An EOQ model with imperfect quality items, inspection errors, shortage backordering, and sales returns. Int. J. Prod. Econ. 143, 162–170 (2013)

    Article  Google Scholar 

  11. M.Y. Jaber, S. Zanoni, L.E. Zanavella, Economic order quantity models for imperfect items with buy and repair options. Int. J. Prod. Econ. 155, 126–131 (2014)

    Article  Google Scholar 

  12. M. Khan, M.Y. Jaber, M. Bonney, An economic order quantity (EOQ) for items with imperfect quality and inspection errors. Int. J. Prod. Econ. 133, 113–118 (2011)

    Article  Google Scholar 

  13. M.J. Khan, M.I. Ali, M. Shutaywi, A new ranking technique for q-rung orthopair fuzzy values. Int. J. Intell. Syst. 36, 558–592 (2020). https://doi.org/10.1002/int.22311

    Article  Google Scholar 

  14. M.J. Khan, P. Kumam, M. Shutaywi, Knowledge measure for the q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 36(2), 628–655 (2020). https://doi.org/10.1002/int.22313

    Article  Google Scholar 

  15. T.Y. Lin, M.T. Chen, An economic order quantity model with screening errors, returned cost, and shortages under quantity discounts. Afr. J. Bus. Manage. 5(4), 1129–1135 (2011)

    Article  Google Scholar 

  16. P. Liu, S. Chen, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans. Syst. Man Cybern Syst. 50, 3741–3756 (2018). https://doi.org/10.1109/TSMC.2018.2852948

    Article  Google Scholar 

  17. P. Liu, W. Liu, Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int. J. Intell. Syst. 34, 1755–1794 (2019). https://doi.org/10.1002/int.22114

    Article  Google Scholar 

  18. P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple- attribute decision making. Int. J. Intell. Syst. 33(2), 259–280 (2018)

    Article  Google Scholar 

  19. P. Liu, Y. Wang, Multiple attribute decision making based on q-Rung Orthopair Fuzzy generalized Maclaurin symmetric mean operators. Inform. Sci. 518, 181–210 (2020)

    Article  MathSciNet  Google Scholar 

  20. J. Liu, H. Zheng, Fuzzy economic order quantity model with imperfect items, shortage and inspection errors. Syst. Eng. Proc. 4, 282–289 (2012)

    Article  Google Scholar 

  21. S. Maity, S.K. De, S.P. Mondal, A study of a backorder EOQ model for cloud-type intuitionistic dense fuzzy demand rate. Int. J. Fuzzy Syst. 22, 201–211 (2019). https://doi.org/10.1007/s40815-019-00756-1

    Article  Google Scholar 

  22. S. Papachristos, I. Konstantaras, Economic ordering quantity models for items with imperfect quality. Int. J. Prod. Econ. 100(1), 148–154 (2006)

    Article  Google Scholar 

  23. R. Patro, M.M. Nayak, M. Acharya, An EOQ model for fuzzy defective rate with allowable proportionate discount. Opsearch 56, 191–215 (2019)

    Article  MathSciNet  Google Scholar 

  24. X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 33(11), 2255–2282 (2018). https://doi.org/10.1002/int.22028

    Article  Google Scholar 

  25. P. Pimsap, W. Srisodaphol, Economic order quantity model for imperfect items under repair option and inspection errors. Brupa J Sci. 23(1), 92–104 (2018)

    Google Scholar 

  26. S. Rajeswari, C. Sugapriya, Fuzzy economic order quantity model with imperfect quality items under repair option. J. Res. Lepidoptera 51(1), 627–643 (2020)

    Article  Google Scholar 

  27. S. Rajeswari, C. Sugapriya, D. Nagarajan, Fuzzy inventory model for NVOCC’s returnable containers under empty container repositioning with leasing option. Compl. Intell. Syst. 7, 753–764 (2021). https://doi.org/10.1007/s40747-020-00229-1

    Article  Google Scholar 

  28. S. Rajeswari, C. Sugapriya, D. Nagarajan, An analysis of uncertain situation and advance payment system on a double-storage fuzzy inventory model. Opsearch (2021). https://doi.org/10.1007/s12597-021-00530-8

    Article  MATH  Google Scholar 

  29. S. Rajeswari, C. Sugapriya, D. Nagarajan, J. Kavikumar, Optimization in fuzzy economic order quantity model involving pentagonal fuzzy parameter. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01111-z

    Article  Google Scholar 

  30. M. Riaz, D. Pamucar, H.M.A. Farid, M.R. Hashmi, q-rung orthopair fuzzy prioritized aggregation operators and their application towards green supplier chain management. Symmetry 12, 976 (2020)

    Article  Google Scholar 

  31. M. Riaz, H.M.A. Farid, H. Kalsoom, D. Pamucar, Y.-M. Chu, A robust q-rung orthopair fuzzy einstein prioritized aggregation operators with application towards MCGDM. Symmetry 12, 1058 (2020)

    Article  Google Scholar 

  32. M. Riaz, H. Garg, H.M.A. Farid, M. Aslam, Novel Q-rung Orthopair fuzzy interaction aggregation operators and their application to low-carbon green supply Chain management. J. Intell. Fuzzy Syst. 41(2), 4109–4126 (2021). https://doi.org/10.3233/JIFS-210506

    Article  Google Scholar 

  33. M.K. Salameh, M.Y. Jaber, Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64(1), 59–64 (2000)

    Article  Google Scholar 

  34. B. Sarkar, S. Saren, Product inspection policy for an imperfect production system with inspection errors and warranty cost. European J. Operat. Res. 248, 263–271 (2016)

    Article  Google Scholar 

  35. G. Wei, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018). https://doi.org/10.1002/int.21985

    Article  Google Scholar 

  36. Y. Xing, R. Zhang, J. Wang, K. Bai, J. Xue, A new multi-criteria group decision-making approach based on q- rung orthopair fuzzy interaction Hamy mean operators. Neural Comput. Appl. 32, 7465–7488 (2019). https://doi.org/10.1007/s00521-019-04269-8

    Article  Google Scholar 

  37. R.R. Yager, Pythagorean fuzzy subsets. In Proceedings of Joint IFSA World Congress and NAFIPS, Annual Meeting, Edmonton, Canada, June 24–28, pp. 57–61 (2013). doi:https://doi.org/10.1109/IFSA‐NAFIPS.2013.6608375

    Google Scholar 

  38. R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers, and decision making: pythagorean membership grades and fuzzy subsets. Int. J. Intell. Syst. 28, 436–452 (2013)

    Article  Google Scholar 

  39. R.R. Yager, Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)

    Article  Google Scholar 

  40. R.R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets. Inf. Fusion. 38, 65–73 (2017). https://doi.org/10.1016/j.inffus.2017.02.005

    Article  Google Scholar 

  41. Z. Yang, H. Garg, Interaction power partitioned Maclaurin symmetric mean operators under q-Rung orthopair uncertain linguistic information. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01062-5

    Article  Google Scholar 

  42. Z. Yang, H. Garg, J. Li, Investigation of multiple heterogeneous relationships using a q-rung orthopair fuzzy multi-criteria decision algorithm. Neural Comput. Appl. 33(17), 10771–10786 (2021). https://doi.org/10.1007/s00521-020-05003-5

    Article  Google Scholar 

  43. Z. Yang, X. Li, Z. Cao, J. Li, Q-rung orthopair normal fuzzy aggregation operators and their application in multi-attribute decision-making. Mathematics 7(12), 1142 (2019). https://doi.org/10.3390/math7121142

    Article  Google Scholar 

  44. W.M. Yeo, X.M. Yuan, Optimal warranty policies for systems with imperfect repair. European J. Operat. Res. 199, 187–197 (2009)

    Article  MathSciNet  Google Scholar 

  45. L. Zadeh, Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  Google Scholar 

  46. Y. Zhongs, H. Gao, X. Guo, Y. Qin, M. Huang, X. Luo, Dombi power partitioned Heronian mean operators of q- rung orthopair fuzzy numbers for multiple attribute group decision making. PLoS ONE 14(10), e0222007 (2019). https://doi.org/10.1371/journal.pone.0222007

    Article  Google Scholar 

  47. Y. Zhou, C. Chen, C. Li, Y. Zhong, A synergic economic order quantity model with trade credit, shortages, imperfect quality and inspection errors. Appl. Math. Model. 40, 1012–1028 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nagarajan .

Editor information

Editors and Affiliations

Appendix

Appendix

Computation of storage charge.

The holding charge is obtained by adding the five parts (a), (b), (c), (d), and (e) in Fig. 6.6.

Fig. 6.6
figure 6

Holding Charge

Using the substitutions, \({\mathsf{I}}_{1} = {\mathsf{I}} - d\mathsf{t}_{1}\), \({\mathsf{I}}_{2} = {\mathsf{I}}_{1} - {\mathscr{Q}}_{1}\), \({\mathsf{I}}_{3} = {\mathsf{I}} - d\left( {\mathsf{t}_{1} + \mathsf{t}_{2} } \right) - {\mathscr{Q}}_{1}\),

\({\mathscr{Q}}^{\prime } = {\mathsf{I}}_{3} + \left( {{\mathscr{Q}}_{1} + {\mathscr{Q}}_{2} - \lambda \sigma {\mathsf{I}}} \right)\); where \(\mathsf{t}_{1} = \frac{{\mathsf{I}}}{\beta }\), \(\mathsf{t}_{2} = \frac{{{\mathscr{Q}}_{1} + {\mathscr{Q}}_{2} }}{{\mathscr{W}}} + \mathsf{t}_{{\text{w}}}\), \(\mathsf{t}_{3} = \frac{{{\mathscr{Q}}^{\prime } }}{d}\), \(\mathsf{t}_{4} = \frac{{\lambda \sigma {\mathsf{I}}}}{d}\) \({\mathscr{Q}}_{1} = \varepsilon_{2} {\mathsf{I}}\) and \({\mathscr{Q}}_{2} = \varepsilon_{3} {\mathsf{I}}\)

  • \(\left({\text{a}}\right)=\frac{\mathsf{h}}{2}{\mathsf{I}}^{2}\left({\frac{2}{\beta}-\frac{\mathsf{d}}{{\beta^{2}}}}\right)\)

  • \(\left( {\text{b}} \right) = \frac{\mathsf{h}}{2}{\mathsf{I}}^{2} \left( {\frac{{\left( {1 - \varepsilon_{2} - \frac{\mathsf{d}}{\beta }} \right)^{2} }}{\mathsf{d}}} \right)\)

  • \(\begin{aligned} \left( {\text{c}} \right) & = \frac{{\mathsf{h}_{W} }}{2}\left( {\frac{{{\mathscr{Q}}^{\prime } \,^{2} - {\mathsf{I}}_{3}^{2} }}{\mathsf{d}}} \right) \\ & = \mathsf{h}_{W} {\mathsf{I}}^{2} \left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\left[ {\frac{1}{\mathsf{d}} - \frac{1}{\beta } - \frac{{\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)}}{{\mathscr{W}}} - \frac{{\left( {\varepsilon_{2} - \varepsilon_{3} + \lambda \sigma } \right)}}{{2\mathsf{d}}}} \right] \\ & \quad \quad \quad \quad - \mathsf{h}_{W} {\mathsf{I}}\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\mathsf{t}_{{\text{w}}} { } \\ \end{aligned}\)

  • \(\left({\text{d}}\right)=\frac{{\mathsf{h}{\mathscr{Q}}_{2}{\mathscr{T}}^{\prime}}}{2}=\frac{{\mathsf{h}{\mathsf{I}}^{2}\varepsilon_{3}}}{{2\mathsf{d}}}\)

  • \(\left( {\text{e}} \right) = \frac{{\mathsf{h}_{R} \lambda \sigma {\mathsf{I}}\mathsf{t}_{4} }}{2} = \frac{{\mathsf{h}_{R} \left( {\lambda \sigma } \right)^{2} {\mathsf{I}}^{2} }}{{2\mathsf{d}}}\;\;[{\text{For}}\;{\text{case}}({\text{i}})]\)

  • \(\left( {\text{e}} \right) = \frac{{\mathsf{h}_{E} \lambda \sigma {\mathsf{I}}\mathsf{t}_{4} }}{2} = \frac{{\mathsf{h}_{E} \left( {\lambda \sigma } \right)^{2} {\mathsf{I}}^{2} }}{{2\mathsf{d}}}\;\;[{\text{For}}\;{\text{case}}\;({\text{ii}})]\)

On adding (a), (b), (c), (d), and (e), the holding charge for case (i) and case (ii) are given as follows:

$$\begin{aligned} HC & = \frac{\mathsf{h}}{2}{\mathsf{I}}^{2} \left( {\frac{2}{\beta } - \frac{\mathsf{d}}{{\beta^{2} }} + \frac{{\left( {1 - \varepsilon_{2} - \frac{\mathsf{d}}{\beta }} \right)^{2} }}{\mathsf{d}}} \right) + \frac{{\mathsf{h}{\mathsf{I}}^{2} \varepsilon_{3} }}{{2\mathsf{d}}} \\ & \quad + \mathsf{h}_{W} {\mathsf{I}}^{2} \left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\left[ {\frac{1}{\mathsf{d}} - \frac{1}{\beta } - \frac{{\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)}}{{\mathscr{W}}} - \frac{{\left( {\varepsilon_{2} - \varepsilon_{3} + \lambda \sigma } \right)}}{{2\mathsf{d}}}} \right] \\ & \quad - \mathsf{h}_{W} {\mathsf{I}}\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\mathsf{t}_{{\text{w}}} + \frac{{\mathsf{h}_{R} \left( {\lambda \sigma } \right)^{2} {\mathsf{I}}^{2} }}{{2\mathsf{d}}}. \\ \end{aligned}$$

and

$$\begin{aligned} HC & = \frac{\mathsf{h}}{2}{\mathsf{I}}^{2} \left( {\frac{2}{\beta } - \frac{\mathsf{d}}{{\beta^{2} }} + \frac{{\left( {1 - \varepsilon_{2} - \frac{\mathsf{d}}{\beta }} \right)^{2} }}{\mathsf{d}}} \right) + \frac{{\mathsf{h}{\mathsf{I}}^{2} \varepsilon_{3} }}{{2\mathsf{d}}} \\ & \quad + \mathsf{h}_{W} {\mathsf{I}}^{2} \left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\left[ {\frac{1}{\mathsf{d}} - \frac{1}{\beta } - \frac{{\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)}}{{\mathscr{W}}} - \frac{{\left( {\varepsilon_{2} - \varepsilon_{3} + \lambda \sigma } \right)}}{{2\mathsf{d}}}} \right] \\ & \quad - \mathsf{h}_{W} {\mathsf{I}}\left( {\varepsilon_{2} + \varepsilon_{3} - \lambda \sigma } \right)\mathsf{t}_{{\text{w}}} + \frac{{\mathsf{h}_{E} \left( {\lambda \sigma } \right)^{2} {\mathsf{I}}^{2} }}{{2\mathsf{d}}}. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugapriya, C., Rajeswari, S., Nagarajan, D., Jeganathan, K. (2022). Knowledge Measure-Based q-Rung Orthopair Fuzzy Inventory Model. In: Garg, H. (eds) q-Rung Orthopair Fuzzy Sets. Springer, Singapore. https://doi.org/10.1007/978-981-19-1449-2_6

Download citation

Publish with us

Policies and ethics