Skip to main content

Decision-Making on Patients’ Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation

  • Chapter
  • First Online:
q-Rung Orthopair Fuzzy Sets

Abstract

q-Rung orthopair fuzzy set (qROFS) is a family of generalized fuzzy sets including intuitionistic fuzzy set, Pythagorean fuzzy set, Fermatean fuzzy set among others. q-Rung orthopair fuzzy set has higher prospect of applications in decision science because it can conveniently tackle vague problems that are beyond the reach of the aforementioned generalized fuzzy sets. The concept of composite relation is a very important information measure use to determine multiple criteria decision-making problems. This chapter proposes max-min-max composite relation under q-Rung orthopair fuzzy sets. Some theorems are used to characterize certain salient properties of q-Rung orthopair fuzzy sets. An easy to follow algorithm and flowchart of the q-Rung orthopair fuzzy max-min-max composite relation are presented to illustrate the computational processes. A case of medical decision-making (MDM) is determined in q-Rung orthopair fuzzy environment to demonstrate the applicability of the proposed q-Rung orthopair fuzzy max-min-max composite relation where diseases and patients are presented as q-Rung orthopair fuzzy values in the feature space of certain symptoms. A comparative study of intuitionistic fuzzy set, Pythagorean fuzzy set, Fermatean fuzzy set and q-Rung orthopair fuzzy set based on max-min-max composite relation is carried out to ascertain the superiority of q-Rung orthopair fuzzy set in curbing uncertainties. It is gleaned from the findings of this chapter that (i) a q-Rung orthopair fuzzy set is an advanced soft computing construct with the ability to precisely curb uncertainty compare to intuitionistic fuzzy set, Pythagorean fuzzy set and Fermatean fuzzy set, (ii) a q-Rung orthopair fuzzy max-min-max composite relation is a reliable information measure for determining decision making problems with precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Set Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  3. K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Physica-Verlag, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  4. R.R. Yager, Pythagorean membership grades in multicriteria decision making. Technical Report MII-3301 (Machine Intelligence Institute, Iona College, New Rochelle, NY, 2013)

    Google Scholar 

  5. R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2013)

    Article  Google Scholar 

  6. S.S. Begum, R. Srinivasan, Some properties on intuitionistic fuzzy sets of third type. Ann. Fuzzy Math. Inform. 10(5), 799–804 (2015)

    MathSciNet  MATH  Google Scholar 

  7. T. Senapati, R.R. Yager, Fermatean fuzzy sets. J. Amb. Intell. Human Comput. 11, 663–674 (2020)

    Article  Google Scholar 

  8. F.E. Boran, D. Akay, A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf. Sci. 255(10), 45–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.M. Chen, C.H. Chang, A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Inf. Sci. 291, 96–114 (2015)

    Article  Google Scholar 

  10. E. Szmidt, J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets. Note IFS 10(4), 61–69 (2004)

    MATH  Google Scholar 

  11. S.K. De, R. Biswas, A.R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Set Syst. 117(2), 209–213 (2001)

    Article  MATH  Google Scholar 

  12. P.A. Ejegwa, Novel correlation coefficient for intuitionistic fuzzy sets and its application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. Appl. 10(2), 39–58 (2021)

    Google Scholar 

  13. P.A. Ejegwa, I.C. Onyeke, Intuitionistic fuzzy statistical correlation algorithm with applications to multi-criteria based decision-making processes. Int. J. Intell. Syst. 36(3), 1386–1407 (2021)

    Article  Google Scholar 

  14. A.G. Hatzimichailidis, A.G. Papakostas, V.G. Kaburlasos, A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems. Int. J. Intell. Syst. 27, 396–409 (2012)

    Article  Google Scholar 

  15. E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications. Note IFS 7(4), 58–64 (2001)

    MATH  Google Scholar 

  16. H. Kamaci, Linear Diophantine fuzzy algebraic structures. J. Amb. Intell. Human Comput. (2021). https://doi.org/10.1007/s12652-020-02826-x

    Article  Google Scholar 

  17. H. Kamaci, H. Garg, S. Petchimuthu, Bipolar trapezoidal neutrosophic sets and their Dombi operators with applications in multicriteria decision making. Soft Comput. 25, 8417–8440 (2021)

    Article  Google Scholar 

  18. S. Petchimuthu, H. Garg, H. Kamaci, A.O. Atagun, The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM. Comput. Appl. Math 39(2020). https://doi.org/10.1007/s40314-020-1083-2

  19. R. Parvathi, N. Palaniappan, Some operations on IFSs of second type. Note IFS 10(2), 1–19 (2004)

    Google Scholar 

  20. D.Q. Li, W.Y. Zeng, Distance measure of Pythagorean fuzzy sets. Int. J. Intell. Syst. 33, 348–361 (2018)

    Article  Google Scholar 

  21. P.A. Ejegwa, Personnel appointments: a Pythagorean fuzzy sets approach using similarity measure. J. Inf. Comput. Sci. 14(2), 94–102 (2019)

    Google Scholar 

  22. P.A. Ejegwa, Modified Zhang and Xu’s distance measure of Pythagorean fuzzy sets and its application to pattern recognition problems. Neural Comput. Appl. 32(14), 10199–10208 (2020)

    Article  Google Scholar 

  23. P.A. Ejegwa, New similarity measures for Pythagorean fuzzy sets with applications. Int. J. Fuzzy Comput. Model 3(1), 75–94 (2020)

    MathSciNet  Google Scholar 

  24. P.A. Ejegwa, J.A. Awolola, Novel distance measures for Pythagorean fuzzy sets with applications to pattern recognition problems. Granul. Comput. 6, 181–189 (2021)

    Article  Google Scholar 

  25. P.A. Ejegwa, S. Wen, Y. Feng, W. Zhang, N. Tang, Novel Pythagorean fuzzy correlation measures via Pythagorean fuzzy deviation, variance and covariance with applications to pattern recognition and career placement. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3063794

    Article  Google Scholar 

  26. P.A. Ejegwa, S. Wen, Y. Feng, W. Zhang, J. Chen, Some new Pythagorean fuzzy correlation techniques via statistical viewpoint with applications to decision-making problems. J. Intell. Fuzzy Syst. 40(5), 9873–9886 (2021)

    Article  Google Scholar 

  27. W. Zeng, D. Li, Q. Yin, Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making. Int. J. Intell. Syst. 33(11), 2236–2254 (2018)

    Article  Google Scholar 

  28. Y.Q. Du, F. Hou, W. Zafar, Q. Yu, Y. Zhai, A novel method for multiattribute decision making with interval-valued Pythagorean fuzzy linguistic information. Int. J. Intell. Syst. 32(10), 1085–1112 (2017)

    Article  Google Scholar 

  29. H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int. J. Intell. Syst. 31(9), 886–920 (2016)

    Article  Google Scholar 

  30. H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision making process. Int. J. Intell. Syst. 32(6), 597–630 (2017)

    Article  Google Scholar 

  31. H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision making process. Int. J. Intell. Syst. 33(6), 1234–1263 (2018)

    Article  Google Scholar 

  32. D. Liang, Z. Xu, The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017)

    Article  Google Scholar 

  33. P.A. Ejegwa, Generalized triparametric correlation coefficient for Pythagorean fuzzy sets with application to MCDM problems. Granul. Comput. 6(3), 557–566 (2021)

    Article  MathSciNet  Google Scholar 

  34. P.A. Ejegwa, V. Adah, I.C. Onyeke, Some modified Pythagorean fuzzy correlation measures with application in determining some selected decision-making problems. Granul. Comput. (2021). https://doi.org/10.1007/s41066-021-00272-4

    Article  Google Scholar 

  35. P.A. Ejegwa, J.A. Awolola, Real-life decision making based on a new correlation coefficient in Pythagorean fuzzy environment. Ann. Fuzzy Math. Inform. 21(1), 51–67 (2021)

    MathSciNet  MATH  Google Scholar 

  36. P.A. Ejegwa, Y. Feng, W. Zhang, Pattern recognition based on an improved Szmidt and Kacprzyk’s correlation coefficient in Pythagorean fuzzy environment, in Advances in Neural Networks-ISNN 2020, ed. by H. Min, Q. Sitian, Z. Nian. Lecture Notes in Computer Science (LNCS), vol. 12557 (Springer, 2020), pp. 190–206

    Google Scholar 

  37. P.A. Ejegwa, C. Jana, Some new weighted correlation coefficients between Pythagorean fuzzy sets and their applications, in Pythagorean Fuzzy Sets, ed. by H. Garg. (Springer, 2021), pp. 39–64

    Google Scholar 

  38. P.A. Ejegwa, I.C. Onyeke, V. Adah, A Pythagorean fuzzy algorithm embedded with a new correlation measure and its application in diagnostic processes. Granul. Comput. (2020). https://doi.org/10.1007/s41066-020-00246-y

    Article  Google Scholar 

  39. P.A. Ejegwa, S. Wen, Y. Feng, W. Zhang, Determination of pattern recognition problems based on a Pythagorean fuzzy correlation measure from statistical viewpoint, in Proceedings of the 13th International Conference of Advanced Computational Intelligence (Wanzhou, China, 2021), pp. 132–139

    Google Scholar 

  40. I. Silambarasan, New operators for Fermatean fuzzy sets. Ann. Commun. Math 3(2), 116–131 (2020)

    MathSciNet  Google Scholar 

  41. D. Liu, Y. Liu, X. Chen, Fermatean fuzzy linguistic set and its application in multicriteria decision making. Int. J. Intell. Syst. 34(5), 878–894 (2019)

    Article  Google Scholar 

  42. Z. Yang, H. Garg, X. Li, Differential calculus of Fermatean fuzzy functions: continuities, derivatives, and differentials. Int. J. Comput. Intell. Syst. 14(1), 282–294 (2021)

    Article  Google Scholar 

  43. T. Senapati, R.R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 85, 112–121 (2019)

    Article  Google Scholar 

  44. T. Senapati, R.R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica 30(2), 391–412 (2019)

    Article  MATH  Google Scholar 

  45. R.R. Yager, Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)

    Article  Google Scholar 

  46. I. Silambarasan, New operations defined over the q-Rung orthopair fuzzy sets. J. Int. Math Virtual Inst. 10(2), 341–359 (2020)

    MathSciNet  MATH  Google Scholar 

  47. E. Dogu, A decision-making approach with q-Rung orthopair fuzzy sets: orthopair fuzzy TOPSIS method. Acad. Platf. J. Eng. Sci. 9(1), 214–222 (2021)

    Google Scholar 

  48. M.J. Khan, P. Kumam, M. Shutaywi, Knowledge measure for the q-Rung orthopair fuzzy sets. Int. J. Intell. Syst. 36(2), 628–655 (2021)

    Article  Google Scholar 

  49. A. Pinar, F.E. Boran, A q-Rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. Int. J. Mach. Learn Cybernet 11, 1749–1780 (2020)

    Article  Google Scholar 

  50. M. Riaz, M.T. Hamid, D. Afzal, D. Pamucar, Y.M. Chu, Multi-criteria decision making in robotic agri-farming with q-Rung orthopair m-polar fuzzy sets. PLoS One 16(2), e0246485 (2021)

    Google Scholar 

  51. H. Garg, CN-q-ROFS: connection number-based q-Rung orthopair fuzzy set and their application to decision-making process. Int. J. Intell. Syst. 36(7), 3106–3143 (2021)

    Article  Google Scholar 

  52. H. Garg, A new possibility degree measure for interval-valued q-Rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 36(1), 526–557 (2021)

    Article  Google Scholar 

  53. H. Garg, A novel trigonometric operation-based q-Rung orthopair fuzzy aggregation operator and its fundamental properties. Neural Comput. Appl. 32, 15077–15099 (2020)

    Article  Google Scholar 

  54. H. Garg, New exponential operation laws and operators for interval-valued q-Rung orthopair fuzzy sets in group decision making process. Neural Comput. Appl. 33(20), 13937–13963 (2021). https://doi.org/10.1007/s00521-021-06036-0

    Article  Google Scholar 

  55. H. Garg, S.M. Chen, Multiattribute group decision making based on neutrality aggregation operators of q-Rung orthopair fuzzy sets. Inf. Sci. 517, 427–447 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q-Rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 33(11), 2255–2282 (2018)

    Article  Google Scholar 

  57. M. Riaz, H. Garg, H.M.A. Farid, M. Aslam, Novel q-Rung orthopair fuzzy interaction aggregation operators and their application to low-carbon green supply chain management. J. Intell. Fuzzy Syst. 41(2), 4109–4126 (2021). https://doi.org/10.3233/JIFS-210506

    Article  Google Scholar 

  58. Z. Yang, H. Garg, Interaction power partitioned Maclaurin symmetric mean operators under q-Rung orthopair uncertain linguistic information. Int. J. Fuzzy Syst. 1–19(2021). https://doi.org/10.1007/s40815-021-01062-5

  59. P. Liu, P. Wang, Some q-Rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 33(2), 259–280 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Augustine Ejegwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ejegwa, P.A. (2022). Decision-Making on Patients’ Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation. In: Garg, H. (eds) q-Rung Orthopair Fuzzy Sets. Springer, Singapore. https://doi.org/10.1007/978-981-19-1449-2_3

Download citation

Publish with us

Policies and ethics