Skip to main content

Overview of Outfall Discharge Modeling with a Focus on Turbulence Modeling Approaches

  • Chapter
  • First Online:
Advances in Fluid Mechanics

Abstract

A better understanding of flow discharge behavior can aid in the optimum design of outfall systems while adhering to regulatory demands. Improvements in computational resources and techniques over the last two decades have allowed numerical modelling to be introduced as a promising approach for outfall discharge modeling and the extraction of data for the entire field of outfall regions. Thus, the application of numerical methods to jet and plume-type flows requires further attention. Among the available numerical techniques, computational fluid dynamics (CFD) method can provide more detailed information on the flow fields of outfall discharge systems without considering some of the simplified assumptions of length-scale and jet integral approaches. This chapter aims to present an overview on the current state-of-the-art in outfall discharge modeling and a summary of the research efforts conducted in this field. Different aspects related to the turbulence modeling approaches in CFD technique are also discussed, demonstrating the applicability of both Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) in outfall discharge modeling. Finally, the knowledge gaps and future research needs are highlighted, which provide a more realistic view on the capabilities of the available techniques for the outfall engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

Artificial Intelligence

AIZ:

Allocated Impact Zone

CFD:

Computational Fluid Dynamics

DES:

Detached Eddy Simulation

DNS:

Direct Numerical Simulation

EPA:

Environmental Protection Agency

FDM:

Finite Difference Method

FVM:

Finite Volume Method

GGDH:

General Gradient Diffusion Hypothesis

LES:

Large Eddy Simulation

LMZ:

Legal Mixing Zone

LRR:

Launder-Reece-Rodi

MGGP:

Multigene Genetic Programming

NPDES:

National Pollutant Discharge Elimination System

ODE:

Ordinary Differential Equation

OpenFOAM:

OPEN Field Operation And Manipulation

PDE:

Partial Differential Equations

RANS:

Reynolds-Averaged Navier–Stokes

RNG:

Re-Normalization Group

RSM:

Reynolds Stress Model

SGDH:

Standard Gradient Diffusion Hypothesis

SGGP:

Single-Gene Genetic Programming

SGS:

Sub-Grid Scale

SPH:

Smoothed Particle Hydrodynamics

SST:

Shear Stress Transport

WFD:

Water Framework Directive

ZID:

Zone of Initial Dilution

a, b, and c:

Empirical parameters in Millero and Poisson equation

B 0 :

Discharge buoyancy flux

b 0 :

Discharge buoyancy flux per unit length

C :

Fluid concentration

C 0 :

Initial jet fluid concentration

C a :

Ambient fluid concentration

\({c}_{1}\) to \({c}_{11}\):

Constants in dimensional analysis

\({D}\) :

Diffusion coefficient

\({D}_{ij}\) :

Transport term by diffusion

d 0 :

Jet nozzle diameter

F 0 :

Jet-densimetric Froude number

\(g\) :

Acceleration due to gravity

\({g}^{^{\prime}}\) :

Modified acceleration due to gravity

\({g}_{0}^{^{\prime}}\) :

Initial modified acceleration due to gravity

H a :

Ambient flow depth

h 0 :

Port height

\(k\) :

Turbulent kinetic energy per mass

\({k}_{eff}\) :

Heat transfer coefficient

L :

Diffuser length

l M :

Jet-to-plume Length Scale

\({L}_{p}\) :

Port-spacing

l Q :

Discharge Length Scale

M 0 :

Discharge momentum flux

m 0 :

Discharge momentum flux per unit length

p :

Fluid pressure

\(p\mathrm{^{\prime}}\) :

Fluctuating component of pressure

\(\overline{p }\) :

Mean/filtered component of pressure

\({P}_{ij}\) :

Production rate of \({R}_{ij}\)

Pr :

Prandtl number

Pr t :

Turbulent Prandtl number

\({Q}_{0}\) :

Discharge volume flux

q 0 :

Discharge volume flux per unit length

\({R}_{ij}\) :

Reynolds stress

\(Re\) :

Reynolds numbers

\({Re}_{0}\) :

Jet Reynolds Number

S :

Salinity

S 0 :

Jet discharge dilution

S c :

Centerline peak dilution

S i :

Impact dilution

S n :

Ultimate dilution

S t :

Terminal peak dilution

T :

Temperature

\({T}_{0}\) :

Jet discharge temperature

\({T}_{a}\) :

Ambient fluid temperature

\(t\) :

Time

\({U}_{0}\) :

Jet discharge velocity

\({U}_{a}\) :

Ambient flow velocity

\(u\mathrm{^{\prime}}\) :

Fluctuating component of velocity

\(\overline{u }\) :

Mean/filtered component of velocity

\(u\), \(v\), and \(w\):

Mean velocity in the x, y, and z directions

x c :

Horizontal distance to jet terminal rise height

x i :

Horizontal distance to jet impact point

x n :

Horizontal distance to near-field location

y c :

Maximum centerline height

\({y}_{l}\) :

Thickness of the spreading layer

\({y}_{t}\) :

Maximum terminal rise height

\(\Delta\) :

Filter size

\(\Delta x\), \(\Delta y\), and \(\Delta z\):

Grid cell sizes in \(x\), \(y\), and \(z\) directions

\(\Delta\uprho\) :

Density difference between the jet flow and the ambient fluid

\({\delta }_{ij}\) :

Kronecker delta

\({\varepsilon }_{ij}\) :

Dissipation rate of \({R}_{ij}\)

\({\theta }_{0}\) :

Jet discharge angle relative to the horizontal

\(\mu\) :

Dynamic viscosity of the fluid

\({\mu }_{t}\) :

Eddy viscosity

\(\upnu\) :

kinematic viscosity

\({\upnu }_{eff}\) :

Effective kinematic viscosity

\({\upnu }_{t}\) :

Turbulent kinematic viscosity

\({\Pi }_{ij}\) :

Transport term by turbulent pressure-strain interactions

\({\rho }_{0}\) :

Jet discharge density

\({\rho }_{a}\) :

Ambient flow density

\({\rho }_{t}\) :

Density of water changing with the temperature in Millero and Poisson empirical equation

\({\tau }_{ij}\) :

Sub-grid scale stresses

\(\mathrm{\varnothing }\left(t\right)\) :

Instantaneous variable

\({\mathrm{\varnothing }}^{^{\prime}}\) :

Fluctuating component of an instantaneous variable

\(\overline{\mathrm{\varnothing } }\) :

Mean component of an instantaneous variable

\({\Omega }_{ij}\) :

Transport term by rotation

References

  1. Missimer, T., Jones, B., Maliva, R. (eds.): Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities: Innovations and Environmental Impacts. Springer, New York, NY, USA (2015)

    Google Scholar 

  2. Einav, R., Lokiec, F.: Environmental aspects of a desalination plant in Ashkelon. Desalination 156, 79–85 (2003). https://doi.org/10.1016/S0011-9164(03)00328-X

    Article  Google Scholar 

  3. Hashim, A., Hajjaj, M.: Impact of desalination plants fluid effluents on the integrity of seawater, with the Arabian Gulf in perspective. Desalination 182, 373–393 (2005). https://doi.org/10.1016/j.desal.2005.04.020

    Article  Google Scholar 

  4. EPA, U.: Water Quality Standards Handbook, 2nd edn. DC, USA, Washington (1994)

    Google Scholar 

  5. Chave, P.: The EU water framework directive. IWA Publishing (2001)

    Google Scholar 

  6. Abessi, O.: Brine disposal and management—planning, design, and implementation. In: Sustainable Desalination Handbook: Plant Selection, Design and Implementation. Elsevier Inc., Amsterdam, pp. 259–303 (2018). https://doi.org/10.1016/B978-0-12-809240-8.00007-1

  7. Loya-Fernández, Á., Ferrero-Vicente, L.M., Marco-Méndez, C., et al.: Quantifying the efficiency of a mono-port diffuser in the dispersion of brine discharges. Desalination 431, 27–34 (2018). https://doi.org/10.1016/j.desal.2017.11.014

    Article  Google Scholar 

  8. Jenkins, S., Paduan, J., Roberts, P., et al.: Management of brine discharges to coastal waters: recommendations of a science advisory panel: submitted at the request of the California water resources (2012)

    Google Scholar 

  9. Roberts, P.J.W., Ferrier, A., Daviero, G.: Mixing in inclined dense jets. J. Hydraul. Eng. 123, 693–699 (1997). https://doi.org/10.1061/(ASCE)0733-9429(1997)123:8(693)

    Article  Google Scholar 

  10. Palomar, P., Losada, I.: Impacts of brine discharge on the marine environment: modelling as a predictive tool. In: In Desalination: Trends and Technologies; Michael, S., Ed. IntechOpen, London, UK (2011)

    Google Scholar 

  11. Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modeling of 30∘ and 45∘ inclined dense turbulent jets in stationary ambient. Environ. Fluid Mech. 15, 537–562 (2015). https://doi.org/10.1007/s10652-014-9372-1

    Article  Google Scholar 

  12. Fischer, H., List, J., Koh, C., et al.: Mixing in inland and coastal waters. Elsevier Inc., San Diego, CA, USA (2013)

    Google Scholar 

  13. Pincince, A.B., List, E.J.: Disposal of brine into an estuary. Water Pollut. Control Fed. 45, 2335–2344 (1973)

    Google Scholar 

  14. Millero, F., Oceanographic, AP-DSRPA.: International one-atmosphere equation of state of seawater. J. Deep Res1. 28, 625–629 (1981). https://doi.org/10.1016/0198-0149(81)90122-9.

  15. Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., et al.: CFD modeling and analysis of the behavior of 30° and 45° inclined dense jets—new numerical insights. J. Appl. Water Eng. Res. 4, 112–127 (2016). https://doi.org/10.1080/23249676.2015.1090351

    Article  Google Scholar 

  16. Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J. Hydraul. Eng. 140,(2014). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000871

  17. Yan, X., Mohammadian, A.: Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports. Water (Switzerland) 11, 14–16 (2019). https://doi.org/10.3390/w11102077

    Article  Google Scholar 

  18. Yan, X., Mohammadian, A., Chen, X.: Numerical modeling of inclined plane jets in a linearly stratified environment. Alexandria Eng. J. 59, 1857–1867 (2020b). https://doi.org/10.1016/j.aej.2020.05.023

    Article  Google Scholar 

  19. Yan, X., Mohammadian, A., Chen, X.: Three-dimensional numerical simulations of buoyant jets discharged from a rosette-type multiport diffuser. J. Mar. Sci. Eng. 7, 1–15 (2019). https://doi.org/10.3390/jmse7110409

    Article  Google Scholar 

  20. Taherian, M., Mohammadian, A.: Buoyant jets in cross-flows: review, developments, and applications. J. Mar. Sci. Eng. 9, 61 (2021). https://doi.org/10.3390/jmse9010061

    Article  Google Scholar 

  21. Sotiropoulos, F.: Introduction to statistical turbulence modelling for hydraulic engineering flows. In: Computational Fluid Dynamics. Applications in Environmental Hydraulics. Wiley, Chichester, UK (2005)

    Google Scholar 

  22. Moukalled, F., Mangani, L., Darwish, M.: Fluid Mechanics and Its Applications The Finite Volume Method in Computational Fluid Dynamics. Springer (2016)

    Google Scholar 

  23. Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method, 2nd edn. Pearson Education (2007)

    Google Scholar 

  24. Launder, B., Reece, G., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975). https://doi.org/10.1017/S0022112075001814

    Article  MATH  Google Scholar 

  25. Rodi, W.: Turbulence models and their applications in hydraulics-a state-of-the-art review. Delft, The Netherlands (1984)

    Google Scholar 

  26. Smagorinsky, J.: General circulation experiments with the primitive equations: I the basic experiment. Mon. Weather Rev. 91, 99–164 (1963). https://doi.org/10.1175/1520-0493(1963)091%3c0099:GCEWTP%3e2.3.CO;2

    Article  Google Scholar 

  27. Zhiyin, Y.: Large-eddy simulation: Past, present and the future. Chinese J. Aeronaut. 28, 11–24 (2015). https://doi.org/10.1016/j.cja.2014.12.007

    Article  Google Scholar 

  28. Mohammadian, A., Gildeh, H.K., Nistor, I.: CFD modeling of effluent discharges: a review of past numerical studies. Water (Switzerland) 12, 856 (2020). https://doi.org/10.3390/w12030856

    Article  Google Scholar 

  29. Lund, T.: On the use of discrete filters for large eddy simulation. Annu. Res. Briefs 83–95 (1997)

    Google Scholar 

  30. Gant, S.: Reliability issues of LES-related approaches in an industrial context. Flow Turbul. Combust. 84, 325–335 (2010). https://doi.org/10.1007/s10494-009-9237-8

    Article  MATH  Google Scholar 

  31. Zhang, S., Law, A.W.K., Zhao, B.: Large eddy simulations of turbulent circular wall jets. Int. J. Heat Mass. Trans. 80, 72–84 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.082

    Article  Google Scholar 

  32. Zhang, S., Law, A.W.K., Jiang, M.: Large eddy simulations of 45° and 60° inclined dense jets with bottom impact. J. Hydro-Environ. Res. 15, 54–66 (2017). https://doi.org/10.1016/j.jher.2017.02.001

    Article  Google Scholar 

  33. Zhang, S., Jiang, B., Law, A.W.K., Zhao, B.: Large eddy simulations of 45° inclined dense jets. Environ. Fluid Mech. 16, 101–121 (2016). https://doi.org/10.1007/s10652-015-9415-2

    Article  Google Scholar 

  34. Jiang, M., Law, A.W.K., Lai, A.C.H.: Turbulence characteristics of 45° inclined dense jets. Environ. Fluid Mech. 19, 27–54 (2019). https://doi.org/10.1007/s10652-018-9614-8

    Article  Google Scholar 

  35. Roberts, P.J.W., Toms, G.: Ocean outfall system for dense and buoyant effluents. J. Environ. Eng. 114, 1175–1191 (1988)

    Article  Google Scholar 

  36. Doneker, R.L., Jirka, G.H.: Cormix User Manual 6.0E: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters. U.S. Environmental Protection Agency, Washington DC (2007)

    Google Scholar 

  37. Wright, S.J.: Buoyant jets in density-stratified crossflow. J. Hydraul. Eng. 110, 643–656 (1984)

    Article  Google Scholar 

  38. Hwang, R.R., Chiang, T.P., Yang, W.C.: Effect of ambient stratification on buoyant jets in cross-flow. J. Eng. Mech. 121, 865–872 (1995). https://doi.org/10.1061/(asce)0733-9399(1995)121:8(865)

    Article  Google Scholar 

  39. Blumberg, A.F., Ji, Z.-G., Ziegler, C.K.: Modeling outfall plume behavior using far field circulation model. J. Hydraul. Eng. 122, 610–616 (1996). https://doi.org/10.1061/(asce)0733-9429(1996)122:11(610)

    Article  Google Scholar 

  40. Zhang, X.-Y., Adams, E.E.: Prediction of near field plume characteristics using far field circulation model. J. Hydraul. Eng. 125, 233–241 (1999). https://doi.org/10.1061/(asce)0733-9429(1999)125:3(233)

    Article  Google Scholar 

  41. Vafeiadou, P., Papakonstantis, I., Christodoulou, G.: Numerical simulation of inclined negatively buoyant jets. In: In Proceedings of the 9th International Conference on Environmental Science and Technology. Rhodes Islands, Greece, pp. A1537–A1542 (2005)

    Google Scholar 

  42. Bloomfield, L., Kerr, R.: Inclined turbulent fountains. J. Fluid Mech. 451, 283–294 (2002). https://doi.org/10.1017/S002211200100652

  43. Kim, D.G., Cho, H.Y.: Modeling the buoyant flow of heated water discharged from surface and submerged side outfalls in shallow and deep water with a cross flow. Environ. Fluid Mech. 6, 501–518 (2006). https://doi.org/10.1007/s10652-006-9006-3

    Article  Google Scholar 

  44. Oliver, C.J., Davidson, M.J., Nokes, R.I.: k-ε predictions of the initial mixing of desalination discharges. Environ. Fluid Mech. 8, 617–625 (2008). https://doi.org/10.1007/s10652-008-9108-1

    Article  Google Scholar 

  45. Papanicolaou, P., Papakonstantis, I., Christodoulou, G.: On the entrainment coefficient in negatively buoyant jets. J. Fluid Mech. 614, 447–470 (2008). https://doi.org/10.1017/S002211200800350

    Article  MathSciNet  MATH  Google Scholar 

  46. Huai, W.X., Li, Z.W., Qian, Z.D., et al.: Numerical simulation of horizontal buoyant wall jet. J. Hydrodyn. 22, 58–65 (2010).https://doi.org/10.1016/S1001-6058(09)60028-7

  47. Christodoulou, G., Hydraulics, IP-E.: Simplified estimates of trajectory of inclined negatively buoyant jets. In: Christodoulou, G,C., Stamou, A.I. (eds.) Environmental Hydraulics- Proceedings of the 6th International Symposium on Environmental Hydraulics. Taylor & Francis, Milton Park, Didcot, pp. 165–170 (2010)

    Google Scholar 

  48. Palomar, P., Lara, J., Losada, I.: Near field brine discharge modeling part 2: validation of commercial tools. Desalination 290, 28–42 (2012)

    Article  Google Scholar 

  49. Oliver, C.J., Davidson, M.J., Nokes, R.I.: Predicting the near-field mixing of desalination discharges in a stationary environment. Desalination 309, 148–155 (2013). https://doi.org/10.1016/j.desal.2012.09.031

    Article  Google Scholar 

  50. Ardalan, H., Vafaei, F.: CFD and experimental study of 45° inclined thermal-saline reversible buoyant jets in stationary ambient. Environ. Process 6, 219–239 (2019). https://doi.org/10.1007/s40710-019-00356-z

    Article  Google Scholar 

  51. Plum B, Webb T, Young J (2008) Modelling of Desalination Plant Outfalls. Sch. Aerospace, Civ. Mech. Eng., p. 24.

    Google Scholar 

  52. El-Amin, M.F., Sun, S., Heidemann, W., Müller-Steinhagen, H.: Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model. Heat Mass Trans. und Stoffuebertragung 46, 943–960 (2010). https://doi.org/10.1007/s00231-010-0625-3

    Article  Google Scholar 

  53. Gildeh, H.K., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modelling of brine discharges using OpenFOAM. In: Proceedings of the International Conference on New Trends in Transport Phenomena. Ottawa, ON, Canada, p. 51 (2014)

    Google Scholar 

  54. Wang, R.Q., Law, A.W.K., Adams, E.E., Fringer, O.B.: Large-eddy simulation of starting buoyant jets. Environ. Fluid Mech. 11, 591–609 (2011). https://doi.org/10.1007/s10652-010-9201-0

    Article  Google Scholar 

  55. Ghaisas, N.S., Shetty, D.A., Frankel, S.H.: Large eddy simulation of turbulent horizontal buoyant jets. J. Turbul. 16, 772–808 (2015). https://doi.org/10.1080/14685248.2015.1008007

    Article  Google Scholar 

  56. Azimi, A., Zhu, D., Rajaratnam, N.: Computational investigation of vertical slurry jets in water. Int. J. Multiph. Flow 47, 94–114 (2012). https://doi.org/10.1016/j.ijmultiphaseflow.2012.07.002

    Article  Google Scholar 

  57. Chan, S.N., Lai, A.C.H., Law, A.W.K., Eric Adams, E.: Two-Phase CFD Modeling of Sediment Plumes for Dredge Disposal in Stagnant Water. In: Estuaries and Coastal Zones in Times of Global Change, pp. 409–423. Springer, Singapore (2020)

    Chapter  Google Scholar 

  58. Chan, S.N., Lee, K.W.Y., Lee, J.H.W., et al.: Numerical modelling of horizontal sediment-laden jets. Environ. Fluid Mech. 14, 173–200 (2014). https://doi.org/10.1007/s10652-013-9287-2

    Article  Google Scholar 

  59. Lee, J., Chu, V.: Turbulent Jets and Plumes: A Lagrangian Approach. Kluwer Academic Publishers, Hingham, MA, USA (2003)

    Book  Google Scholar 

  60. Lai, A.C.H., Lee, J.H.W.: Dynamic interaction of multiple buoyant jets. J. Fluid Mech. 708, 539–575 (2012). https://doi.org/10.1017/jfm.2012.332

    Article  MathSciNet  MATH  Google Scholar 

  61. Jirka, G.H.: Integral model for turbulent buoyant jets in unbounded stratified flows part 2: plane jet dynamics resulting from multiport diffuser jets. Environ. Fluid Mech. 6, 43–100 (2006). https://doi.org/10.1007/s10652-005-4656-0

    Article  Google Scholar 

  62. Isaacson, M.S., Koh, R.C.Y., Brooks, N.H.: Plume dilution for diffusers with multiport risers. J. Hydraul. Eng. 109, 199–220 (1983). https://doi.org/10.1061/(asce)0733-9429(1983)109:2(199)

    Article  Google Scholar 

  63. Anderson, E.A., Spall, R.E.: Experimental and numerical investigation of two-dimensional parallel jets. J. Fluids Eng. Trans. ASME 123, 401–406 (2001). https://doi.org/10.1115/1.1363701

    Article  Google Scholar 

  64. Law, A., Lee, C., Qi, Y.: CFD modeling of a multiport diffuser in an oblique current. In: Proceedings of the Marine Waste Water Discharges, MWWD. Istanbul, Turkey (2002)

    Google Scholar 

  65. Kuang, C., Lee, J., Liu, S., Gu, J.: Numerical study on plume interaction above an alternating diffuser in stagnant water. China Ocean Eng. 20, 289–302 (2006)

    Google Scholar 

  66. Xiao, Y., Lee, J., Tang, H., Yu, D.: Three-dimensional computations of multiple tandem jets in crossflow. China Ocean Eng. 20, 99–112 (2006)

    Google Scholar 

  67. Wang, H.J., Davidson, M.J.: Jet interaction in a still ambient fluid. J. Hydraul. Eng. 129, 349–357 (2003). https://doi.org/10.1061/(asce)0733-9429(2003)129:5(349)

    Article  Google Scholar 

  68. Yannopoulos, P.C., Noutsopoulos, G.C.: Interaction of vertical round turbulent buoyant jets—Part I: entrainment restriction approach. J. Hydraul. Res. 44, 218–232 (2006). https://doi.org/10.1080/00221686.2006.9521677

    Article  Google Scholar 

  69. Tang, H.S., Paik, J., Sotiropoulos, F., Khangaonkar, T.: Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. J. Hydraul. Eng. 134, 1210–1224 (2008). https://doi.org/10.1061/(asce)0733-9429(2008)134:9(1210)

    Article  Google Scholar 

  70. Yan, X., Mohammadian, A.: Evolutionary modeling of inclined dense jets discharged from multiport diffusers. J. Coast Res. 36, 362–371 (2020a). https://doi.org/10.2112/JCOASTRES-D-19-00057.1

    Article  Google Scholar 

  71. Yan, X., Mohammadian, A.: Evolutionary prediction of multiple vertical buoyant jets in stationary ambient water. Desalin. Water Treat. 178, 41–52 (2020b). https://doi.org/10.5004/dwt.2020.24938

    Article  Google Scholar 

  72. Baum, M.J., Gibbes, B.: Field-scale numerical modeling of a dense multiport diffuser outfall in crossflow. J. Hydraul. Eng. 146, 05019006 (2020). https://doi.org/10.1061/(asce)hy.1943-7900.0001635

    Article  Google Scholar 

  73. Yan, X., Ghodoosipour, B., Mohammadian, A.: Three-dimensional numerical study of multiple vertical buoyant jets in stationary ambient water. J. Hydraul. Eng. 146, 04020049 (2020a). https://doi.org/10.1061/(asce)hy.1943-7900.0001768

    Article  Google Scholar 

  74. Aristodemo, F., Marrone, S., Federico, I.: SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 105, 160–175 (2015). https://doi.org/10.1016/j.oceaneng.2015.06.018

    Article  Google Scholar 

  75. Hu, X.Y., Adams, N.A.: A SPH model for incompressible turbulence. Procedia IUTAM 18, 66–75 (2015). https://doi.org/10.1016/j.piutam.2015.11.007

    Article  Google Scholar 

  76. Liu, S., Wang, X., Ban, X., et al.: Turbulent details simulation for SPH fluids via vorticity refinement. Comput. Graph. Forum. 40, 54–67 (2021). https://doi.org/10.1111/cgf.14095

    Article  Google Scholar 

  77. Meister, M., Winkler, D., Rezavand, M., Rauch, W.: Integrating hydrodynamics and biokinetics in wastewater treatment modelling by using smoothed particle hydrodynamics. Comput. Chem. Eng. 99, 1–12 (2017). https://doi.org/10.1016/j.compchemeng.2016.12.020

    Article  Google Scholar 

  78. Tran-Duc, T., Phan-Thien, N., Khoo, B.C.: A smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloor. Phys. Fluids 29, 083302 (2017). https://doi.org/10.1063/1.4993474

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Taherian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taherian, M., Saeidi Hosseini, S.A.R., Mohammadian, A. (2022). Overview of Outfall Discharge Modeling with a Focus on Turbulence Modeling Approaches. In: Zeidan, D., Zhang, L.T., Da Silva, E.G., Merker, J. (eds) Advances in Fluid Mechanics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1438-6_4

Download citation

Publish with us

Policies and ethics