Skip to main content

Vibration Analysis of Fluid Structure Interface for Rectangular Plate

  • Conference paper
  • First Online:
Next Generation of Internet of Things

Abstract

Investigate the vibration of the rectangular plate related to the liquid, normal body frequency and modes shapes of cantilever plate without and with hole and perforate plate with 169 hole in air and contact of the water surface and immersed in water are presented using finite element method via ANSYS15 software. Acoustic model in three dimension domain is considered using APDL program to take the variables. The gotten comes about detailed the 6th plate normal body frequency and mode shapes which are based upon the behavior of the plate. In all cases, there are diminished with in the natural frequency of the fluid–structure framework. It can be concluded from our work that the exactness of the predicted frequencies utilizing our demonstrate is either exceptionally great or at slightest adequate for commonsense purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus MS (1978) A finite-element method applied to the vibration of submerged plates. J Ship Res 22:94–99

    Article  Google Scholar 

  2. Bauer HF (1981) Hydroelastic vibrations in a rectangular container. Int J Solids Struct 17:639–652

    Article  Google Scholar 

  3. Soedel SM, Soedel W (1994) On the free and forced vibration of a plate supporting a freely sloshing surface liquid. J Sound Vib 171:159–171

    Article  Google Scholar 

  4. Kwak MK (1996) Hydroelastic vibrations of rectangular plates. J Appl Mech ASME 63:110–115

    Article  Google Scholar 

  5. Kwak MK, Han SB (2000) Effect of fluid depth on the hydroelastic vibration of free-edge circular plate. J Sound Vibrat 230(1):171–185

    Article  Google Scholar 

  6. Zhou D, Cheung YK (2000) Vibration of vertical rectangular plate in contact with water on hone side. Earthq Eng Struct Dyn 29:693–710

    Article  Google Scholar 

  7. Cheung YK, Zhou D (2002) Hydroelastic vibration of a circular container bottom plate using the Galerkin method. J Fluid Struct 16(4):561–580

    Article  Google Scholar 

  8. Kerboua Y, Lakis AA, Thomas M, Marcouiller L (2008) Vibration analysis of rectangular plates coupled with fluid. Appl Math Model 32:2570–2586

    Article  Google Scholar 

  9. Fahy FJ (2012) Sound and structural vibration: radiation, transmission and response 7.2, numerical analysis of sound fields. Technology and engineering, pp 273–274. Coupled field, acoustics (UP19980818). www.ansys.stuba.sk/html/guide_55/g-cou/GCOU4.htm.ANSYS Basic analysis procedures guide. http://www.ansys.stuba.sk/html/guide_55/g-bas/GBASToc.htm

  10. Ameen HA, Ismail AH, Mashloosh KM (2012) Effect of stiffeners and thickness of shell on the natural frequencies and mode shapes of oblate shell by finite element method. Al-Qadisiya J Eng Sci 5(3):325–340; ANSYS, Release (15.0) (2014) ANSYS mechanical APDL element reference and ANSYS mechanical APDL structural analysis guide. ANSYS, Inc., USA

    Google Scholar 

  11. Gadicha AB et al (2021) J Phys: Conf Ser 1963:012141

    Google Scholar 

  12. Hasan HA, Sopian K, Fudholi A, Photovoltaic thermal solar water collector designed with a jet collision system. Energy 161. j.energy.2018.07.141

    Google Scholar 

  13. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Sopian K, Hasan HA (2016) Electrocoagulation by solar energy feed for textile wastewater treatment including mechanism and hydrogen production using a novel reactor design with a rotating anode. RSC Adv 6(12):10192–10204

    Article  Google Scholar 

  14. Aboghrara AM, Baharudin BTHT, Alghoul MA, Adam NM, Hairuddin AA, Hasan HA (2017) Performance analysis of solar air heater with jet impingement on corrugated absorber plate. Case Stud Therm Eng 10:111–120. https://doi.org/10.1016/j.csite.2017.04.002

    Article  Google Scholar 

  15. Hameed Jaaz A, Hasan HA, Sopian K, Kadhum AAH, Gaaz TS, Al-Amiery AA (2017) Outdoor performance analysis of a photovoltaic thermal (PVT) collector with jet impingement and compound parabolic concentrator (CPC). Materials (Basel) 10(8). https://doi.org/10.3390/ma10080888

  16. Sopian K, Alwaeli AHA, Hasan HA, Al-Shamani AN (2018) Advances in high efficiency photovoltaic thermal solar collectors. J Adv Res Fluid Mech Therm Sci 47(1)

    Google Scholar 

  17. Hasan HA et al (2017) Numerical investigation of Microjet impingement of water for cooling photovoltaic solar cell. J Adv Res Fluid Mech Therm Sci 51(1):1108–1121. 2017.icheatmasstransfer.2012.10.023

    Google Scholar 

  18. Al-Shamani AN, Sopian K, Mat S, Hasan HA, Abed AM, Ruslan MH (2016) Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manag 124:528–542. https://doi.org/10.1016/j.enconman.2016.07.052

    Article  Google Scholar 

  19. Sopian K et al (2017) Effect of the nozzle exit position on the efficiency of ejector cooling system using R134A. ARPN J Eng Appl Sci 12(18):5245–5250

    Google Scholar 

  20. Hasan HA, Alquziweeni Z, Sopian K (2018) Heat transfer enhancement using nanofluids for cooling a central processing unit (CPU) system. J Adv Res Fluid Mech Therm Sci 51(2)

    Google Scholar 

  21. Ameen KA, Hasan HA, Al-Dulaimi MJ, Abed AM, Al-Qrimli HF (Jan 2022) Improving the performance of air conditioning unit by using a hybrid technique. MethodsX 9:101620. https://doi.org/10.1016/j.mex.2022.101620

  22. Hasan HA, Sopian K, Jaaz AH, Al-Shamani AN, “Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector,” Sol. Energy, vol. 144, pp. 321–334, 2017.solener.2017.01.036.

    Google Scholar 

  23. Mohammed HA, Hasan HA, Wahid MA (2013) Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf 40(1):36–46

    Article  Google Scholar 

  24. Rukman NS, et al (Jul 2021) Bi-fluid cooling effect on electrical characteristics of flexible photovoltaic panel. J Mechatron, Electr Power, Veh Technol 12(1):51–56. 2021.v12.51–56

    Google Scholar 

  25. Sopian K et al (2017) A stand-alone photovoltaic system design and sizing: a greenhouse application in Sabha city: case study in Libya. Proc 3rd Eng Sci Technol 3:1–10

    Google Scholar 

  26. Dezfouli MMS et al (2017) Energy saving potential of solar cooling systems in hot and humid region. ARPN J Eng Appl Sci 12(18):5241–5244

    Google Scholar 

  27. Ameen KA, Al-Dulaimi MJ, Abrahem HA, Hasan HA (2020) Experimental study to increase the strength of the adhesive bond by increasing the surface area arrangement. IOP Conf Ser Mater Sci Eng 765:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayser Aziz Ameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aziz Ameen, K., Abdulrasool Hasan, H., Sherza, J.S., Hasan, H.A., Mohy, R.J., Hatam, A.A. (2023). Vibration Analysis of Fluid Structure Interface for Rectangular Plate. In: Kumar, R., Pattnaik, P.K., R. S. Tavares, J.M. (eds) Next Generation of Internet of Things. Lecture Notes in Networks and Systems, vol 445. Springer, Singapore. https://doi.org/10.1007/978-981-19-1412-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1412-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1411-9

  • Online ISBN: 978-981-19-1412-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics