Skip to main content

Role of Microfluidics in Drug Delivery

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

In recent times, there has been rapid improvement and achievement in the development of novel drug delivery systems (NDDS) in a microfluidic environment. Microfluidics technology harnesses the fluid mechanics to generate the delivery systems with unique size and shape that can be used for various pharmaceutical applications. However, the conventional methods require bulky instruments, are expensive, consume more power, have a high thermal loss, and require more time. Further, it is very challenging to automate, integrate, and miniaturize the conventional device on a single platform for synthesizing nanoscale delivery systems. There has been considerable advancement in developing microfluidic devices in the last few decades for NDDS. The microfluidic device unveils several features such as portability, transparency in operation, controllability, and stability with a marginal reaction volume. The microfluidic-based delivery systems allow rapid processing and increased efficiency of the technique by using minimum peripherals for its operation. In this chapter, we have discussed the microfluidic devices used to prepare various formulations for several applications. This chapter summarizes the value chain to develop microfluidic devices, including designs, fabrication techniques, and other related methodologies, to formulate various pharmaceutical drug delivery systems in a controlled and selective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Espuny AC, Espina M, Garcia ML, Sánchez-López E (2019) Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics 11(9):1–29. https://doi.org/10.3390/pharmaceutics11090460

    Article  CAS  Google Scholar 

  2. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010. https://doi.org/10.1039/c2cs15344k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andar AU, Hood RR, Vreeland WN, Devoe DL, Swaan PW (2014) Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res 31(2):401–413. https://doi.org/10.1007/s11095-013-1171-8

    Article  CAS  PubMed  Google Scholar 

  4. Puneeth SB, Kulkarni MB, Goel S (2021) Microfluidic viscometers for biochemical and biomedical applications: a review. Eng Res Express 3(2). https://doi.org/10.1088/2631-8695/abfd47

  5. Kulkarni MB, Goel S (2021) A review on recent advancements in chamber-based microfluidic PCR devices. In: Microelectronics and signal processing. CRC Press, Boca Raton, FL, pp 49–70

    Chapter  Google Scholar 

  6. Zhu H, Korabečná M, Neužil P (2020) Review PCR past, present and future. Biotechniques 69(4):1–10

    Article  Google Scholar 

  7. Kulkarni MB, Goel S (2020) Advances in continuous-flow based microfluidic PCR devices—a review. Eng Res Express 2(4):042001. https://doi.org/10.1088/2631-8695/abd287

    Article  Google Scholar 

  8. Kulkarni MB, Goel S (2020) Microfluidic devices for synthesizing nanomaterials—a review. Nano Exp 1(1):1–30

    Article  Google Scholar 

  9. Baird CL, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recognit 14(5):261–268. https://doi.org/10.1002/jmr.544

    Article  CAS  PubMed  Google Scholar 

  10. Afrin S, Gupta V (2021) Pharmaceutical formulation. StatPearls, Treasure Island, FL

    Google Scholar 

  11. Kothuru A, Hanumanth Rao C, Puneeth SB, Salve M, Amreen K, Goel S (2020) Laser-induced flexible electronics (LIFE) for resistive, capacitive and electrochemical sensing applications. IEEE Sensors J 20(13):7392–7399. https://doi.org/10.1109/JSEN.2020.2977694

    Article  CAS  Google Scholar 

  12. Mancera-Andrade EI, Parsaeimehr A, Arevalo-Gallegos A, Ascencio-Favela G, Parra-Saldivar R (2018) Microfluidics technology for drug delivery: a review. Front Biosci 10(1):74–91. https://doi.org/10.2741/e809

    Article  Google Scholar 

  13. Wang Y, Kohane DS (2017) External triggering and triggered targeting strategies for drug delivery. Nat Rev Mater 2:17020. https://doi.org/10.1038/natrevmats.2017.20

    Article  CAS  Google Scholar 

  14. Microfluidics as tool for drug delivery (5). https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidics-as-a-tool-for-drug-delivery/

  15. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10(2):81–98. https://doi.org/10.1016/j.ajps.2014.09.004

    Article  Google Scholar 

  16. Kulkarni MB, Yashas, Enaganti PK, Amreen K, Goel S (2020) Internet of Things enabled portable thermal management system with microfluidic platform to synthesize MnO2 nanoparticles for electrochemical sensing. Nanotechnology 31(42):1–8. https://doi.org/10.1088/1361-6528/ab9ed8

    Article  CAS  Google Scholar 

  17. Kulkarni MB, Goyal S, Dhar A, Sriram D, Goel S (2021) Miniaturized and IoT enabled continuous-flow based microfluidic PCR device for DNA amplification. IEEE Trans Nanobioscience 1241(c):1. https://doi.org/10.1109/tnb.2021.3092292

    Article  Google Scholar 

  18. Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35(13):4223–4237. https://doi.org/10.1093/nar/gkm389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406. https://doi.org/10.1021/ar300314s

    Article  CAS  PubMed  Google Scholar 

  20. Lei KF (2012) Microfluidic systems for diagnostic applications: a review. J Lab Autom 17(5):330–347. https://doi.org/10.1177/2211068212454853

    Article  CAS  PubMed  Google Scholar 

  21. Microfluidics in drug discovery: an overview (2013). https://www.researchgate.net/publication/256706001

  22. Damiati S, Kompella UB, Damiati SA, Kodzius R (2018) Microfluidic devices for drug delivery systems and drug screening. Genes 9(2):103. https://doi.org/10.3390/genes9020103

    Article  CAS  PubMed Central  Google Scholar 

  23. Rao LT, Rewatkar P, Dubey SK, Javed A, Goel S (2020) Automated pencil electrode formation platform to realize uniform and reproducible graphite electrodes on paper for microfluidic fuel cells. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-68579-x

    Article  CAS  Google Scholar 

  24. Kulkarni MB, Salve M, Goel S (2021) Miniaturized thermal monitoring module with CO laser ablated microfluidic device for electrochemically validated DNA amplification. IEEE Trans Instrum Meas 70(c):1–8. https://doi.org/10.1109/TIM.2021.3097861

    Article  Google Scholar 

  25. Kulkarni MB, Goel S (2021) Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluid Nanofluid 25(8):1–13. https://doi.org/10.1007/s10404-021-02473-4

    Article  CAS  Google Scholar 

  26. Srikanth S, Dudala S, Jayapiriya US, Mohan JM, Raut S, Dubey SK, Ishii I, Javed A, Goel S (2021) Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-88068-z

    Article  CAS  Google Scholar 

  27. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220. https://doi.org/10.1039/B715524G

    Article  CAS  PubMed  Google Scholar 

  28. Hong M, Zhu S, Jiang Y, Tang G, Pei Y (2009) Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release 133(2):96–102. https://doi.org/10.1016/j.jconrel.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  29. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G (2020) Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 10(46):27835–27855. https://doi.org/10.1039/d0ra04971a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pla-Roca M, Fernandez JG, Mills CA, Martínez E, Samitier J (2007) Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and nanoimprint apparatus. Langmuir 23(16):8614–8618. https://doi.org/10.1021/LA700572R

    Article  CAS  PubMed  Google Scholar 

  31. Park J, Li J, Han A (2010) Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications. Biomed Microdevices 12(2):345–351. https://doi.org/10.1007/S10544-009-9390-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Agrawal A, Kulkarni S, Sharma SB (2016) Recent advancements and applications of multiple emulsions. Adv Pharm. https://doi.org/10.7439/ijap

  33. Tomeh MA, Zhao X (2020) Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol Pharm 17(12):4421–4434. https://doi.org/10.1021/acs.molpharmaceut.0c00913

    Article  CAS  PubMed  Google Scholar 

  34. Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27. https://doi.org/10.1016/S1369-7021(08)70053-1

    Article  CAS  Google Scholar 

  35. Costa L, Reis RL, Silva-Correia J, Oliveira JM (2020) Microfluidics for angiogenesis research. Adv Exp Med Biol 1230:97–119

    Article  CAS  Google Scholar 

  36. Javaid MU, Cheema TA, Park CW (2017) Analysis of passive mixing in a serpentine microchannel with sinusoidal side walls. Micromachines 9(1):8. https://doi.org/10.3390/mi9010008

    Article  PubMed Central  Google Scholar 

  37. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C (2016) Liposome production by microfluidics: potential and limiting factors. Sci Rep 6(1):1–15. https://doi.org/10.1038/srep25876

    Article  CAS  Google Scholar 

  38. Brannigan RP, Dove AP (2016) Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci 5(1):9–21. https://doi.org/10.1039/C6BM00584E

    Article  PubMed  Google Scholar 

  39. Shepherd SJ, Issadore D, Mitchell MJ (2021) Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274:120826. https://doi.org/10.1016/J.BIOMATERIALS.2021.120826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hasani-Sadrabadi MM, Karimkhani V, Majedi FS, Van Dersarl JJ, Dashtimoghadam E, Afshar-Taromi F, Mirzadeh H, Bertsch A, Jacob KI, Renaud P, Stadler FJ, Kim I (2014) Microfluidic-assisted self-assembly of complex dendritic polyethylene drug delivery nanocapsules. Adv Mater 26(19):3118–3123. https://doi.org/10.1002/ADMA.201305753

    Article  CAS  PubMed  Google Scholar 

  41. Palanisamy P, Raichur AM (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C 29(1):199–204. https://doi.org/10.1016/j.msec.2008.06.008

    Article  CAS  Google Scholar 

  42. Vladisavljević GT, Al Nuumani R, Nabavi SA (2017) Microfluidic production of multiple emulsions. Micromachines 8(3). https://doi.org/10.3390/mi8030075

  43. Puneeth SB, Goel S (2019) Novel 3D printed microfluidic paper-based analytical device with integrated screen-printed electrodes for automated viscosity measurements. IEEE Trans Electron Devices 66(7):3196–3201. https://doi.org/10.1109/TED.2019.2913851

    Article  CAS  Google Scholar 

  44. Puneeth SB, Goel S (2019) Chemical and biological sensors amperometric automation and optimization paper microfluidic viscometer. IEEE Sens Lett 3(3):1–4. https://doi.org/10.1109/LSENS.2019.2894623

    Article  Google Scholar 

  45. Hakala TA, Davies S, Toprakcioglu Z, Bernardim B, Bernardes GJL, Knowles TPJ (2020) A microfluidic co-flow route for human serum albumin-drug–nanoparticle assembly. Chemistry 26(27):5965–5969. https://doi.org/10.1002/chem.202001146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH (2020) Protein-based nanoparticles as drug delivery systems. Pharmaceutics 12(7):1–28. https://doi.org/10.3390/pharmaceutics12070604

    Article  CAS  Google Scholar 

  47. van Ballegooie C, Man A, Andreu I, Gates BD, Yapp D (2019) Using a microfluidics system to reproducibly synthesize protein nanoparticles: factors contributing to size, homogeneity, and stability. Process 7(5):290. https://doi.org/10.3390/PR7050290

    Article  Google Scholar 

  48. Evanko DS, Haydon PG (2005) Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37(4):341–348. https://doi.org/10.1016/j.ceca.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  49. Labib G (2018) Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opin Drug Deliv 15(1):65–75. https://doi.org/10.1080/17425247.2017.1349752

    Article  CAS  PubMed  Google Scholar 

  50. Alqahtani AY, Rajkhan AA (2020) E-learning critical success factors during the covid-19 pandemic: a comprehensive analysis of e-learning managerial perspectives. Educ Sci 10(9):1–16. https://doi.org/10.3390/educsci10090216

    Article  Google Scholar 

  51. Weaver E, Uddin S, Cole DK, Hooker A, Lamprou DA (2021) The present and future role of microfluidics for protein and peptide-based therapeutics and diagnostics. Appl Sci 11(9):4109. https://doi.org/10.3390/app11094109

    Article  CAS  Google Scholar 

  52. Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Wang X, Sun Y (2020) Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale 12(29):15512–15527. https://doi.org/10.1039/d0nr02397c

    Article  CAS  PubMed  Google Scholar 

  53. Davies RT, Kim D, Park J (2012) Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. J Micromech Microeng 22(5):055003. https://doi.org/10.1088/0960-1317/22/5/055003

    Article  CAS  Google Scholar 

  54. Fan Y, Zhang Q (2013) Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci 8(2):81–87. https://doi.org/10.1016/j.ajps.2013.07.010

    Article  CAS  Google Scholar 

  55. Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2018) Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 128:54–83. https://doi.org/10.1016/J.ADDR.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  56. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C (2016) Liposome production by microfluidics: potential and limiting factors. Sci Rep 6:25876

    Article  CAS  Google Scholar 

  57. Ag Seleci D, Maurer V, Stahl F, Scheper T, Garnweitner G (2019) Rapid microfluidic preparation of niosomes for targeted drug delivery. Int J Mol Sci 20(19):4696. https://doi.org/10.3390/IJMS20194696

    Article  PubMed Central  Google Scholar 

  58. Lo CT, Jahn A, Locascio LE, Vreeland WN (2010) Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir 26(11):8559–8566. https://doi.org/10.1021/la904616s

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad G, El Sadda R, Botchkina G, Ojima I, Egan J, Amiji M (2017) Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth, vol 406. Elsevier B.V., Amsterdam

    Google Scholar 

  60. Kulkarni MB, Velmurugan K, Prasanth E, Amreen K, Nirmal J, Goel S (2021) Smartphone enabled miniaturized temperature controller platform to synthesize nio/cuo nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications. Biomed Microdevices 23(2):1–13. https://doi.org/10.1007/s10544-021-00567-y

    Article  CAS  Google Scholar 

  61. Maravajjala KS, Swetha KL, Sharma S, Padhye T, Roy A (2020) Development of a size-tunable paclitaxel micelle using a microfluidic-based system and evaluation of its in-vitro efficacy and intracellular delivery. J Drug Deliv Sci Technol 60:102041. https://doi.org/10.1016/j.jddst.2020.102041

    Article  CAS  Google Scholar 

  62. Lim JM, Bertrand N, Valencia PM, Rhee M, Langer R, Jon S, Farokhzad OC, Karnik R (2014) Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine 10(2):401–409. https://doi.org/10.1016/J.NANO.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  63. Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, Wild AW, Lee JB, Taylor RJ, Tam YK, Hansen CL, Cullis PR (2012) Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1(8):e37. https://doi.org/10.1038/MTNA.2012.28

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank the Parenteral Drug Association, Indian chapter for providing grant support to Dr. Nirmal J.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velmurugan, K., Kulkarni, M.B., Gupta, I., Das, R., Goel, S., Nirmal, J. (2022). Role of Microfluidics in Drug Delivery. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_5

Download citation

Publish with us

Policies and ethics