Skip to main content

Brain-on-a-Chip

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

Unravelling the microenvironment of the human brain to investigate the different pathophysiological conditions is a pivotal task. The demarcation of the central nervous system from the peripheral nervous system makes the human brain developmental process a more protracted one. Increasing number of various neurodegenerative diseases causes a major challenge to the management of global public health. Although traditional in vivo animal models and in vitro cell culture models facilitate the evaluation of the structural and functional aspects of the brain, they have certain limitations too. This calls for an innovative approach in the shape of Microfluidics Technology that can offer a single platform to culture neurons in a quasi-physiological confined microenvironment, to reconstitute neural framework under spatiotemporal regulation and external stimulation for modelling of neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, and more followed by high-throughput analysis of effective drug delivery systems. In this chapter, we have highlighted the various structural and functional aspects of the human brain by the reconstitution of the central nervous system and the peripheral nervous system on chip. We have thereby highlighted the neurological disorders that are associated with the malfunctioning of both the nervous systems succeeded by high-throughput analysis of drugs on chip that have been screened till date. Therefore, these lab-on-chip technologies hold promises for mimicking the complex brain microenvironment imparting novel platform for disease modelling and drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tierney AL, Nelson CA III (2009) Brain development and the role of experience in the early years. Zero To Three 30:9

    PubMed  PubMed Central  Google Scholar 

  2. Oppenheim RW, Milligan CE, Von Bartheld CS (2013) Programmed cell death and neurotrophic factors. Fundament Neurosci. https://doi.org/10.1016/B978-0-12-385870-2.00018-4

  3. Mukherjee N, Nandi S, Ghosh S, Garg S, Ghosh S (2020) Three-dimensional microfluidic platform with neural organoids: model system for unraveling synapses. ACS Chem Neurosci 11(2):101–102

    Article  CAS  PubMed  Google Scholar 

  4. Nelson CA III, Thomas KM, De Haan M (2007) Neural bases of cognitive development. In: Handbook of child psychology, vol 2. Wiley, Hoboken, NJ

    Google Scholar 

  5. Rämer PC, Chijioke O, Meixlsperger S, Leung CS, Münz C (2011) Mice with human immune system components as in vivo models for infections with human pathogens. Immunol Cell Biol 89:408–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Der Helm MW, Van Der Meer AD, Eijkel JC, Van Den Berg A, Segerink LI (2016) Microfluidic organ-on-Chip Technology for blood-brain barrier research. Tissue Barriers 4:E1142493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    Article  PubMed  CAS  Google Scholar 

  10. Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407–418

    Article  CAS  PubMed  Google Scholar 

  11. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  12. Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Croushore CA, Supharoek S-A, Lee CY, Jakmunee J, Sweedler JV (2012) Microfluidic device for the selective chemical stimulation of neurons and characterization of peptide release with mass spectrometry. Anal Chem 84:9446–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD (2016) Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small 12:612–622

    Article  CAS  PubMed  Google Scholar 

  15. Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM (2015) Recreating blood-brain barrier physiology and structure on Chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9:054124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang YI, Abaci HE, Shuler ML (2017) Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114:184–194

    Article  CAS  PubMed  Google Scholar 

  17. Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, Arai K, Lo EH, Irimia D (2015) Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep 5:1–9

    Article  CAS  Google Scholar 

  18. Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J (2021) 3D biomaterial models of human brain disease. Neurochem Int 147:105043

    Article  CAS  PubMed  Google Scholar 

  19. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  20. Carlsson A, Lindqvist M, Magnusson T (1957) 3, 4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as reserpine antagonists. Nature 180:1200–1200

    Article  CAS  PubMed  Google Scholar 

  21. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu Y, Shamsi MH, Krastev DL, Dryden MD, Leung Y, Wheeler AR (2016) A microfluidic method for dopamine uptake measurements in dopaminergic neurons. Lab Chip 16:543–552

    Article  CAS  PubMed  Google Scholar 

  23. Senel M, Dervisevic E, Alhassen S, Dervisevic M, Alachkar A, Cadarso VJ, Voelcker NH (2020) Microfluidic electrochemical sensor for cerebrospinal fluid and blood dopamine detection in a mouse model of Parkinson’s disease. Anal Chem 92:12347–12355

    Article  CAS  PubMed  Google Scholar 

  24. Gravitz L (2021) The promise and potential of stem cells in Parkinson’s disease. Nature 597:8–10

    Article  CAS  Google Scholar 

  25. Titmarsh DM, Chen H, Glass NR, Cooper-White JJ (2014) Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl Med 3:81–90

    Article  PubMed  Google Scholar 

  26. Van Der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:E1000245

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ndyabawe K, Cipriano M, Zhao W, Haidekker M, Yao K, Mao L, Kisaalita WS (2020) Brain-on-A-Chip device for modeling multiregional networks. ACS Biomater Sci Eng 7:350–359

    Article  PubMed  CAS  Google Scholar 

  28. World Health Organization (2021) World Health Organization, Dementia, 2 September 2021, www.who.int/news-room/fact-sheets/detail/dementia (Accessed 28 Oct 2021).

  29. Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD (2018a) In vitro microfluidic models for neurodegenerative disorders. Adv Healthc Mater 7:1700489

    Article  CAS  Google Scholar 

  30. Machado CB, Pluchon P, Harley P, Rigby M, Sabater VG, Stevenson DC, Hynes S, Lowe A, Burrone J, Viasnoff V (2019) In vitro modeling of nerve–muscle connectivity in a compartmentalized tissue culture device. Adv Biosyst 3:1800307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ionescu A, Gradus T, Altman T, Maimon R, Avraham NS, Geva M, Hayden M, Perlson E (2019) Targeting the Sigma-1 receptor via Pridopidine ameliorates central features of Als pathology in a Sod1 G93a model. Cell Death Dis 10:1–19

    Article  CAS  Google Scholar 

  32. Ionescu A, Perlson E (2019) Patient-derived co-cultures for studying Als. Nat Biomed Eng 3:13–14

    Article  PubMed  Google Scholar 

  33. Ali MS, Hooshmand N, El-Sayed M, Labouta HI (2021) Microfluidics for development of lipid nanoparticles: paving the way for nucleic acids to the clinic. ACS Appl Biomater. https://doi.org/10.1021/acsabm.1c00732

  34. Chennampally P, Sayed-Zahid A, Soundararajan P, Sharp J, Cox GA, Collins SD, Smith RL (2021) A microfluidic approach to rescue Als motor neuron degeneration using rapamycin. Sci Rep 11:1–12

    CAS  Google Scholar 

  35. Gu S, Lu Y, Ding Y, Li L, Zhang F, Wu Q (2013) Droplet-based microfluidics for dose–response assay of enzyme inhibitors by electrochemical method. Anal Chim Acta 796:68–74

    Article  CAS  PubMed  Google Scholar 

  36. Sofela S, Sahloul S, Song Y-A (2021) Biophysical analysis of drug efficacy on C. Elegans models for neurodegenerative and neuromuscular diseases. PLoS One 16:E0246496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Oliveira TR, Erbereli CR, Manzine PR, Magalhães TN, Balthazar ML, Cominetti MR, Faria RC (2020) Early diagnosis of Alzheimer’s disease in blood using a disposable electrochemical microfluidic platform. ACS Sens 5:1010–1019

    Article  PubMed  CAS  Google Scholar 

  38. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee S-H (2015) Three-dimensional brain-on-A-Chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15:141–150

    Article  CAS  PubMed  Google Scholar 

  39. Fantuzzo JA, De Filippis L, Mcgowan H, Yang N, Ng Y-H, Halikere A, Liu J-J, Hart RP, Wernig M, Zahn JD (2017) Μ neurocircuitry: establishing in vitro models of Neurocircuits with human neurons. Technology 5:87–97

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maoz BM, Herland A, Fitzgerald EA, Grevesse T, Vidoudez C, Pacheco AR, Sheehy SP, Park T-E, Dauth S, Mannix R (2018) A linked organ-on-Chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol 36:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tourovskaia A, Li N, Folch A (2008) Localized acetylcholine receptor clustering dynamics in response to microfluidic focal stimulation with Agrin. Biophys J 95:3009–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor AM, Jeon NL (2010) Micro-scale and microfluidic devices for neurobiology. Curr Opin Neurobiol 20:640–647

    Article  CAS  PubMed  Google Scholar 

  43. Hosmane S, Yang IH, Ruffin A, Thakor N, Venkatesan A (2010) Circular compartmentalized microfluidic platform: study of axon–glia interactions. Lab Chip 10:741–747

    Article  CAS  PubMed  Google Scholar 

  44. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Majumdar D, Gao Y, Li D, Webb DJ (2011) Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 196:38–44

    Article  PubMed  Google Scholar 

  46. Park J, Koito H, Li J, Han A (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11:1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi M, Majumdar D, Gao Y, Brewer BM, Goodwin CR, Mclean JA, Li D, Webb DJ (2013) Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13:3008–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adriani G, Ma D, Pavesi A, Goh EL, Kamm RD (2015) Modeling the blood-brain barrier in a 3D triple co-culture microfluidic system. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, New York, pp 338–341

    Chapter  Google Scholar 

  49. Yong Y, Hughes C, Deppmann C (2020) A microfluidic culture platform to assess axon degeneration. Axon degeneration. Springer, New York

    Google Scholar 

  50. Bolognin S, Fossépré M, Qing X, Jarazo J, Ščančar J, Moreno EL, Nickels SL, Wasner K, Ouzren N, Walter J (2019) 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv Sci 6:1800927

    Article  CAS  Google Scholar 

  51. Liu J, Sternberg AR, Ghiasvand S, Berdichevsky Y (2018) Epilepsy-on-A-Chip system for antiepileptic drug discovery. IEEE Trans Biomed Eng 66:1231–1241

    Article  PubMed  PubMed Central  Google Scholar 

  52. Osaki T, Uzel SG, Kamm RD (2018b) Microphysiological 3D model of amyotrophic lateral sclerosis (Als) from human Ips-derived muscle cells and optogenetic motor neurons. Sci Adv 4:Eaat5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruiz A, Joshi P, Mastrangelo R, Francolini M, Verderio C, Matteoli M (2014) Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip 14:2860–2866

    Article  CAS  PubMed  Google Scholar 

  54. Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, Kim DY, Kamm RD, Tanzi RE (2019) Blood–brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv Sci 6:1900962

    Article  CAS  Google Scholar 

  55. Wevers NR, Van Vught R, Wilschut KJ, Nicolas A, Chiang C, Lanz HL, Trietsch SJ, Joore J, Vulto P (2016) High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  56. Yi H-G, Jeong YH, Kim Y, Choi Y-J, Moon HE, Park SH, Kang KS, Bae M, Jang J, Youn H (2019) A bioprinted human-glioblastoma-on-A-Chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 3:509–519

    Article  CAS  PubMed  Google Scholar 

  57. Takeuchi A, Nakafutami S, Tani H, Mori M, Takayama Y, Moriguchi H, Kotani K, Miwa K, Lee J-K, Noshiro M (2011) Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab Chip 11:2268–2275

    Article  CAS  PubMed  Google Scholar 

  58. Neto E, Alves CJ, Sousa DM, Alencastre IS, Lourenço AH, Leitão L, Ryu HR, Jeon NL, Fernandes R, Aguiar P (2014) Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr Biol 6:586–595

    Article  CAS  Google Scholar 

  59. Lei Y, Li J, Wang N, Yang X, Hamada Y, Li Q, Zheng W, Jiang X (2016) An on-Chip model for investigating the interaction between neurons and cancer cells. Integr Biol 8:359–367

    Article  Google Scholar 

  60. Crawford LK, Caterina MJ (2020) Functional anatomy of the sensory nervous system: updates from the neuroscience bench. Toxicol Pathol 48:174–189

    Article  PubMed  Google Scholar 

  61. Koop LK, Tadi P (2021) Neuroanatomy, sensory nerves. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL. [Accessed 31 Jul 2021]. Available from https://www.ncbi.nlm.nih.gov/books/NBK539846/

    Google Scholar 

  62. Newbern JM (2015) Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 111:201–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Rev 48:457–476

    Article  CAS  PubMed  Google Scholar 

  64. Arvidson B (1979) Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp Neurol 63:388–410

    Article  CAS  PubMed  Google Scholar 

  65. Davis MP (2012) Drug management of visceral pain: concepts from basic research. Pain Res Treat 2012:265605

    PubMed  PubMed Central  Google Scholar 

  66. Umans BD, Liberles SD (2018) Neural sensing of organ volume. Trends Neurosci 41:911–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim HN, Choi N (2019) Consideration of the mechanical properties of hydrogels for brain tissue engineering and brain-on-A-Chip. Biochip J 13:8–19

    Article  CAS  Google Scholar 

  68. Chaudhuri O (2017) Viscoelastic hydrogels for 3D cell culture. Biomater Sci 5:1480–1490

    Article  CAS  PubMed  Google Scholar 

  69. Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, Mcalpine MC (2016) 3D printed nervous system on a Chip. Lab Chip 16:1393–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakai K, Shimba K, Kotani K, Jimbo Y (2017) A co-culture microtunnel technique demonstrating a significant contribution of unmyelinated Schwann cells to the acceleration of axonal conduction in Schwann cell-regulated peripheral nerve development. Integr Biol 9:678–686

    Article  CAS  Google Scholar 

  71. Anderson WA, Willenberg AR, Bosak AJ, Willenberg BJ, Lambert S (2018) Use of a capillary alginate gel (Capgel™) to study the three-dimensional development of sensory nerves reveals the formation of a rudimentary Perineurium. J Neurosci Methods 305:46–53

    Article  CAS  PubMed  Google Scholar 

  72. Sharma AD, Mccoy L, Jacobs E, Willey H, Behn JQ, Nguyen H, Bolon B, Curley JL, Moore MJ (2019) Engineering a 3D functional human peripheral nerve in vitro using the nerve-on-A-Chip platform. Sci Rep 9:1–12

    CAS  Google Scholar 

  73. Tsantoulas C, Farmer C, Machado P, Baba K, Mcmahon SB, Raouf R (2013) Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One 8:E80722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vysokov N, Mcmahon SB, Raouf R (2019) The role of Na V channels in synaptic transmission after Axotomy in a microfluidic culture platform. Sci Rep 9:1–13

    Article  CAS  Google Scholar 

  75. Stifani N (2014) Motor neurons and the generation of spinal motor neurons diversity. Front Cell Neurosci 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  76. Eccles J, Eccles RM, Lundberg A (1957) The convergence of monosynaptic excitatory afferents on to many different species of alpha Motoneurones. J Physiol 137:22–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eccles JC, Eccles RM, Iggo A, Lundberg A (1960) Electrophysiological studies on gamma motoneurones. Acta Physiol Scand 50:32–40

    Article  CAS  PubMed  Google Scholar 

  78. Jaiswal MK (2014) Selective vulnerability of Motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for Motoneurons specific calcium dysregulation. Mol Cell Ther 2:1–15

    Article  Google Scholar 

  79. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci 74:4516–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Altman T, Maimon R, Ionescu A, Pery TG, Perlson E (2020) Axonal transport of organelles in motor neuron cultures using microfluidic chambers system. J Vis Exp E60993

    Google Scholar 

  81. Osaki T, Chow SYA, Nakanishi Y, Hernandez J, Kawada J, Fujii T, Ikeuchi Y (2020) Three-dimensional motor nerve organoid generation. J Vis Exp E61544

    Google Scholar 

  82. Southam KA, King AE, Blizzard CA, Mccormack GH, Dickson TC (2013) Microfluidic primary culture model of the lower motor neuron–neuromuscular junction circuit. J Neurosci Methods 218:164–169

    Article  PubMed  Google Scholar 

  83. Zahavi EE, Ionescu A, Gluska S, Gradus T, Ben-Yaakov K, Perlson E (2015) A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of Gdnf functions. J Cell Sci 128:1241–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Brännvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K (2007) Enhanced neuronal differentiation in a three-dimensional collagen-Hyaluronan matrix. J Neurosci Res 85:2138–2146

    Article  PubMed  CAS  Google Scholar 

  85. Shima A, Morimoto Y, Sweeney HL, Takeuchi S (2018) Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Exp Cell Res 370:168–173

    Article  CAS  PubMed  Google Scholar 

  86. Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, Vulto P, Wevers NR, Pasterkamp RJ (2021) A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci Rep 11:1–15

    Article  CAS  Google Scholar 

  87. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  88. Masrori P, Van Damme P (2020) Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27:1918–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Millecamps S, Julien J-P (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14:161–176

    Article  CAS  PubMed  Google Scholar 

  90. De Vos KJ, Hafezparast M (2017) Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis 105:283–299

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lu X, Kim-Han JS, O’Malley KL, Sakiyama-Elbert SE (2012) A microdevice platform for visualizing mitochondrial transport in aligned dopaminergic axons. J Neurosci Methods 209:35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Briese M, Saal L, Appenzeller S, Moradi M, Baluapuri A, Sendtner M (2016) Whole transcriptome profiling reveals the Rna content of motor axons. Nucleic Acids Res 44:E33–E33

    Article  PubMed  Google Scholar 

  93. Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL (2018) Axonal Mrna transport and translation at a glance. J Cell Sci 131:Jcs196808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Santoso JW, Mccain ML (2020) Neuromuscular disease modeling on a Chip. Dis Model Mech 13:Dmm044867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandi, S., Ghosh, S., Garg, S., Sarkar, A., Ghosh, S. (2022). Brain-on-a-Chip. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_21

Download citation

Publish with us

Policies and ethics