Skip to main content

Brainbow: Principle, Technique, and Applications

  • Chapter
  • First Online:
Advances in Brain Imaging Techniques

Abstract

In the field of neuroscience, studying the intricate architecture of neuronal and glial cells forming a network in the nervous system can be extremely useful to understand the networking of neurons within the brain and other parts of the nervous system. However, this is an extremely arduous task due to the complexity of the brain and nerve tissue. To this end, optical techniques combined with genetic labeling techniques can be used to obtain a visual representation of the neurons in the tissue. Brainbow is one such strategy that uses Cre-lox recombination to stochastically express two to four fluorescent proteins in cells of the same tissue. This expression is combinatorial and depends on the copy number of the loxP sites present in each cell, thereby resulting in a myriad of colors and hues, which are unique to each cell, making it easier to visually distinguish each neuron within the complex arrangement of the tissue. This multicolor labeling technique otherwise referred to as the “Brainbow” technique is briefly discussed in the following chapter, along with the principle, techniques, and various applications in the field of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morris GB, Ridgway EJ, Suvarna SK (2019) Traditional stains and modern techniques for demonstrating microorganisms in histology. In: Bancroft’s theory and practice of histological techniques, vol 254(1). Elsevier, Amsterdam, pp 1–5

    Google Scholar 

  3. Yurt KK, Kivrak EG, Altun G, Mohamed H, Ali F, Gasmalla HE, Kaplan S (2018) A brief update on physical and optical disector applications and sectioning-staining methods in neuroscience. J Chem Neuroanat 93(1):16–29

    Article  PubMed  Google Scholar 

  4. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239

    Article  CAS  PubMed  Google Scholar 

  5. Goedhart J, Von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, Van Weeren L, Gadella TW, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3(1):1–9

    Article  CAS  Google Scholar 

  6. Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55(2):220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee H, Oh WC, Seong J, Kim J (2016) Advanced fluorescence protein-based synapse-detectors. Front Synaptic Neurosci 8(1):16

    PubMed  PubMed Central  Google Scholar 

  8. Uemura T, Mori T, Kurihara T, Kawase S, Koike R, Satoga M, Cao X, Li X, Yanagawa T, Sakurai T, Shindo T (2016) Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques. Sci Rep 6(1):1–3

    Article  CAS  Google Scholar 

  9. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62

    Article  CAS  PubMed  Google Scholar 

  10. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9(6):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination: I. Recombination between loxP sites. J Mol Biol 150(4):467–486

    Article  CAS  PubMed  Google Scholar 

  12. Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region: evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187(2):197–212

    Article  CAS  PubMed  Google Scholar 

  13. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  14. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28

    Article  CAS  PubMed  Google Scholar 

  15. Van Duyne GD (2015) Cre recombinase. Microbiol Spectrum 3(1):3–1

    Google Scholar 

  16. Loulier K, Barry R, Mahou P, Le Franc Y, Supatto W, Matho KS, Ieng S, Fouquet S, Dupin E, Benosman R, Chédotal A (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81(3):505–520

    Article  CAS  PubMed  Google Scholar 

  17. Hillman EM, Voleti V, Li W, Yu H (2019) Light-sheet microscopy in neuroscience. Annu Rev Neurosci 42(2):295–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gleichgerrcht E, Fridriksson J, Rorden C, Bonilha L (2017) Connectome-based lesion-symptom mapping (CLSM): a novel approach to map neurological function. NeuroImage Clin 16(5):461–467

    Article  PubMed  PubMed Central  Google Scholar 

  19. Elliott AD (2020) Confocal microscopy: principles and modern practices. Curr Protoc Cytom 92(1):68

    Google Scholar 

  20. Cook ZT, Brockway NL, Weissman TA (2020) Visualizing the developing brain in living zebrafish using brainbow and time-lapse confocal imaging. J Vis Exp (157):60593

    Google Scholar 

  21. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3):726–739

    Article  CAS  PubMed  Google Scholar 

  22. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162(2):246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa EC, Silva DN, Moreira AF, Correia IJ (2019) Optical clearing methods: an overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng 116(10):2742–2763

    Article  CAS  PubMed  Google Scholar 

  24. Ke MT, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16(8):1154–1161

    Article  CAS  PubMed  Google Scholar 

  25. Hildebrand S, Schueth A, Herrler A, Galuske R, Roebroeck A (2019) Scalable labeling for cytoarchitectonic characterization of large optically cleared human neocortex samples. Sci Rep 9(1):1

    Article  CAS  Google Scholar 

  26. Zhao S, Todorov MI, Cai R, Rami AM, Steinke H, Kemter E, Mai H, Rong Z, Warmer M, Stanic K, Schoppe O (2020) Cellular and molecular probing of intact human organs. Cell 180(4):796–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10(6):540–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakaguchi R, Leiwe MN, Imai T (2018) Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. elife 7:e40350

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wickersham IR, Finke S, Conzelmann KK, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4(1):47–49

    Article  CAS  PubMed  Google Scholar 

  30. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53(5):639–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8(3):253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Förster D, Luschnig S (2012) Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 14(5):526–534

    Article  PubMed  CAS  Google Scholar 

  33. Rajashekhar KP, Singh RN (1994) Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J Comp Neurol 349(4):633–645

    Article  CAS  PubMed  Google Scholar 

  34. Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: The biology of Drosophila. Wiley, New York, pp 421–534

    Google Scholar 

  35. Worley MI, Setiawan L, Hariharan IK (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140(15):3275–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, Ciruna B, Sanes JR, Lichtman JW, Schier AF (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140(13):2835–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta V, Poss KD (2012) Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484(7395):479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robles E, Filosa A, Baier H (2013) Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J Neurosci 33:5027–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  40. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  CAS  PubMed  Google Scholar 

  41. Franco SJ, Müller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77(1):19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Snippert HJ, Van Der Flier LG, Sato T, Van Es JH, Van Den Born M, Kroon-Veenboer C, Barker N, Klein AM, Van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  CAS  PubMed  Google Scholar 

  43. García-Moreno F, Vasistha NA, Begbie J, Molnár Z (2014) CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141(7):1589–1598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T (2021) Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 20(7):559–572

    Article  CAS  PubMed  Google Scholar 

  45. Blakely PK, Kleinschmidt-DeMasters BK, Tyler KL, Irani DN (2009) Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol 68(10):1061–1072

    Article  CAS  PubMed  Google Scholar 

  46. Kleinschmidt-DeMasters BK, Beckham JD (2015) West Nile virus encephalitis 16 years later. Brain Pathol 25(5):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6(2):127–130

    Article  PubMed  CAS  Google Scholar 

  48. Vig PJ, Lu D, Paul AM, Kuwar R, Lopez M, Stokic DS, Leis AA, Garrett MR, Bai F (2019) Differential expression of genes related to innate immune responses in ex vivo spinal cord and cerebellar slice cultures infected with west nile virus. Brain Sci 9(1):1

    Article  CAS  Google Scholar 

  49. Brockway NL, Cook ZT, O’Gallagher MJ, Tobias ZJ, Gedi M, Carey KM, Unni VK, Pan YA, Metz MR, Weissman TA (2019) Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Dev Biol 453(2):130–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Global Innovation and Technology Alliance (GITA), Department of Science and Technology (DST), India [Project Number-GITA/DST/TWN/P-95/2021], and Indian Council of Medical Research (ICMR), (Project Number-ITR/Ad-hoc/43/2020-21, ID No. 2020-3286) Government of India, India for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makkithaya, K.N., Rath, S., Garemilla, S.S., Sowmya, S., Keerthana, S., Mazumder, N. (2022). Brainbow: Principle, Technique, and Applications. In: Mazumder, N., Gangadharan, G., Kistenev, Y.V. (eds) Advances in Brain Imaging Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-19-1352-5_6

Download citation

Publish with us

Policies and ethics