Skip to main content

Artificial Intelligence in Ophthalmology

  • Chapter
  • First Online:
Artificial Intelligence in Medicine

Abstract

Ophthalmology is the branch of medicine that encompasses diseases and treatments of the eye. Its technical, clinical and public health features have enabled it to be an ideal field for the development and deployment of artificial intelligence (AI). Indeed, it is within ophthalmology that many of healthcare’s most promising AI applications have emerged – from early-stage tools in development, to regulatory-approved and commercialised platforms in real-world clinical use. The field’s technical, clinical and public health contexts are described within this chapter and are further illustrated through case studies in diabetic retinopathy (DR), glaucoma and retinopathy of prematurity (ROP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frick KD, Foster A (2003) The magnitude and cost of global blindness: an increasing problem that can be alleviated. Am J Ophthalmol 135(4):471–476

    Article  Google Scholar 

  2. Armstrong K, Jovic M, Vo-Phuoc J et al (2012) The global cost of eliminating avoidable blindness. Indian J Ophthalmol 60(5):475–480

    Article  Google Scholar 

  3. Pizzarello L, Abiose A, Ffytche T et al (2004) VISION 2020: The Right to Sight: a global initiative to eliminate avoidable blindness. Arch Ophthalmol 122(4):615–620

    Article  Google Scholar 

  4. Chua BE, Xie J, Arnold AL et al (2011) Glaucoma prevalence in Indigenous Australians. Br J Ophthalmol 95(7):926–930

    Article  Google Scholar 

  5. Tapp RJ, Shaw JE, Harper CA et al (2003) The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care 26(6):1731–1737

    Article  Google Scholar 

  6. Bachmann MO, Nelson SJ (1998) Impact of diabetic retinopathy screening on a British district population: case detection and blindness prevention in an evidence-based model. J Epidemiol Community Health 52(1):45–52

    Article  Google Scholar 

  7. Looker HC, Nyangoma SO, Cromie DT et al (2014) Rates of referable eye disease in the Scottish National Diabetic Retinopathy Screening Programme. Br J Ophthalmol 98(6):790

    Article  Google Scholar 

  8. Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  Google Scholar 

  9. Wong TY, Cheung CM, Larsen M et al (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:16012

    Article  Google Scholar 

  10. International Diabetes Federation IDF Diabetes Atlas 2019. https://diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf. Published 2019

  11. Jeganathan VS, Wang JJ, Wong TY (2008) Ocular associations of diabetes other than diabetic retinopathy. Diabetes Care 31(9):1905–1912

    Article  Google Scholar 

  12. Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298(8):902–916

    Article  Google Scholar 

  13. Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  Google Scholar 

  14. Wilkinson CP, Ferris FL 3rd, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  Google Scholar 

  15. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 98(5 Suppl):786–806

    Google Scholar 

  16. Vujosevic S, Benetti E, Massignan F et al (2009) Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields. Am J Ophthalmol 148(1):111–118

    Article  Google Scholar 

  17. Silva PS, Horton MB, Clary D et al (2016) Identification of diabetic retinopathy and ungradable image rate with ultrawide field imaging in a national teleophthalmology program. Ophthalmology 123(6):1360–1367

    Article  Google Scholar 

  18. Rohan TE, Frost CD, Wald NJ (1989) Prevention of blindness by screening for diabetic retinopathy: a quantitative assessment. BMJ 299(6709):1198–1201

    Article  Google Scholar 

  19. Arun CS, Al-Bermani A, Stannard K, Taylor R (2009) Long-term impact of retinal screening on significant diabetes-related visual impairment in the working age population. Diabet Med 26(5):489–492

    Article  Google Scholar 

  20. Backlund LB, Algvere PV, Rosenqvist U (1997) New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med 14(9):732–740

    Article  Google Scholar 

  21. Abramoff MD, Niemeijer M, Suttorp-Schulten MS et al (2008) Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31(2):193–198

    Article  Google Scholar 

  22. Abramoff MD, Folk JC, Han DP et al (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131(3):351–357

    Article  Google Scholar 

  23. Solanki K, Ramachandra C, Bhat S et al (2015) EyeArt: automated, high-throughput, image analysis for diabetic retinopathy screening. Investig Ophthalmol Vis Sci 56(7):1429

    Google Scholar 

  24. Tufail A, Rudisill C, Egan C et al (2017) Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology 124(3):343–351

    Article  Google Scholar 

  25. Abramoff MD, Lou Y, Erginay A et al (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206

    Article  Google Scholar 

  26. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969

    Article  Google Scholar 

  27. Ting DSW, Cheung CY, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223

    Article  Google Scholar 

  28. Rajalakshmi R, Subashini R, Anjana RM, Mohan V (2018) Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye (Lond) 32(6):1138–1144

    Article  Google Scholar 

  29. Abramoff MD, Lavin PT, Birch M et al (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 1:39

    Article  Google Scholar 

  30. Xie Y, Nguyen QD, Hamzah H et al (2020) Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health

    Google Scholar 

  31. Beede E, Baylor E, Hersch F et al (2020) A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI conference on human factors in computing systems. Honolulu, HI, USA. Association for Computing Machinery

    Google Scholar 

  32. Zheng Y, Sahni J, Campa C et al (2013) Computerized assessment of intraretinal and subretinal fluid regions in spectral-domain optical coherence tomography images of the retina. Am J Ophthalmol 155(2):277–86.e1

    Article  Google Scholar 

  33. Lee CS, Tyring AJ, Deruyter NP et al (2017) Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express 8(7):3440–3448

    Article  Google Scholar 

  34. Wang K, Jayadev C, Nittala MG et al (2018) Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images. Acta Ophthalmol 96(2):e168–ee73

    Article  Google Scholar 

  35. Nagasawa T, Tabuchi H, Masumoto H et al (2019) Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy. Int Ophthalmol 39(10):2153–2159

    Article  Google Scholar 

  36. Bawankar P, Shanbhag N, Smitha KS et al (2017) Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm-Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. PLoS One 12(12):e0189854

    Article  Google Scholar 

  37. Poplin R, Varadarajan AV, Blumer K et al (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2(3):158–164

    Article  Google Scholar 

  38. Bourne RR, Taylor HR, Flaxman SR et al (2016) Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: a meta-analysis. PLoS One 11(10):e0162229

    Article  Google Scholar 

  39. Quigley HA (2011) Glaucoma. Lancet 377(9774):1367–1377

    Article  Google Scholar 

  40. Glaucoma definition. https://www.know-the-eye.com/eye-disorders/glaucoma/

  41. Am J Ophthalmology. https://www.ajo.com/article/S0002-9394(20)30603-6/fulltext, https://doi.org/10.1016/j.ajo.2020.10.021

  42. J Curr Glaucoma Pract. https://doi.org/10.5005/jp-journals-10008-1146, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741153/.

  43. Wills Eye Manual, chapter 9, primary open angle glaucoma. https://www.aao.org/wills-eye-manual/Chapter009

  44. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80(5):389–393

    Article  Google Scholar 

  45. Tham YC, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  Google Scholar 

  46. Br J Ophthalmol. 2004 Jan; 88(1): 88–94. https://doi.org/10.1136/bjo.88.1.88, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1771920/

  47. Scanlon PH (2017) The English National Screening Programme for diabetic retinopathy 2003–2016. Acta Diabetol 54(6):515–525

    Article  Google Scholar 

  48. Crossland L, Askew D, Ware R et al (2016) Diabetic retinopathy screening and monitoring of early stage disease in Australian general practice: tackling preventable blindness within a chronic care model. J Diabetes Res 2016:8405395

    Article  Google Scholar 

  49. Medeiros FA, Jammal AA, Thompson AC (2019) From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology 126(4):513–521

    Article  Google Scholar 

  50. Mariottoni EB, Datta S, Dov D et al (2020) Artificial intelligence mapping of structure to function in glaucoma. Transl Vis Sci Technol 9(2):19

    Article  Google Scholar 

  51. Kong YX, Coote MA, O'Neill EC et al (2011) Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clin Exp Ophthalmol 39(4):308–317

    Article  Google Scholar 

  52. O'Neill EC, Gurria LU, Pandav SS et al (2014) Glaucomatous optic neuropathy evaluation project: factors associated with underestimation of glaucoma likelihood. JAMA Ophthalmol 132(5):560–566

    Article  Google Scholar 

  53. Breusegem C, Fieuws S, Stalmans I, Zeyen T (2011) Agreement and accuracy of non-expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology 118(4):742–746

    Article  Google Scholar 

  54. Girard MJA, Schmetterer L (2020) Artificial intelligence and deep learning in glaucoma: current state and future prospects. Prog Brain Res 257:37–64

    Article  Google Scholar 

  55. Mursch-Edlmayr AS, Ng WS, Diniz-Filho A et al (2020) Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: translation to clinical practice. Transl Vis Sci Technol 9(2):55

    Article  Google Scholar 

  56. Barbosa Breda J, Van Eijgen J, Stalmans I (2020) Advanced vascular examinations of the retina and optic nerve head in glaucoma. Prog Brain Res 257:77–83

    Article  Google Scholar 

  57. Li Z, He Y, Keel S et al (2018) Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8):1199–1206

    Article  Google Scholar 

  58. Liu H, Li L, Wormstone IM et al (2019) Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol

    Google Scholar 

  59. Liu S, Graham SL, Schulz A et al (2018) A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs. Ophthalmol Glaucoma 1(1):15–22

    Article  Google Scholar 

  60. Asrani S, Essaid L, Alder BD, Santiago-Turla C (2014) Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol 132(4):396–402

    Article  Google Scholar 

  61. Devalla SK, Chin KS, Mari JM et al (2018) A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Invest Ophthalmol Vis Sci 59(1):63–74

    Article  Google Scholar 

  62. Apostolopoulos S, Salas J, Ordonez JLP et al (2020) Automatically enhanced OCT scans of the retina: a proof of concept study. Sci Rep 10(1):7819

    Article  Google Scholar 

  63. Qiu B, Huang Z, Liu X et al (2020) Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomed Opt Express 11(2):817–830

    Article  Google Scholar 

  64. Thompson AC, Jammal AA, Berchuck SI et al (2020) Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol 138(4):333–339

    Article  Google Scholar 

  65. Ran AR, Shi J, Ngai AK et al (2019) Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans. Neurophotonics 6(4):041110

    Article  Google Scholar 

  66. Andersson S, Heijl A, Bizios D, Bengtsson B (2013) Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma. Acta Ophthalmol 91(5):413–417

    Article  Google Scholar 

  67. Bizios D, Heijl A, Bengtsson B (2007) Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J Glaucoma 16(1):20–28

    Article  Google Scholar 

  68. Chan K, Lee TW, Sample PA et al (2002) Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng 49(9):963–974

    Article  Google Scholar 

  69. Lietman T, Eng J, Katz J, Quigley HA (1999) Neural networks for visual field analysis: how do they compare with other algorithms? J Glaucoma 8(1):77–80

    Article  Google Scholar 

  70. Goldbaum MH, Sample PA, White H et al (1994) Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 35(9):3362–3373

    Google Scholar 

  71. Goldbaum MH, Sample PA, Chan K et al (2002) Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 43(1):162–169

    Google Scholar 

  72. Li F, Wang Z, Qu G et al (2018) Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging 18(1):35

    Article  Google Scholar 

  73. Asaoka R, Murata H, Iwase A, Araie M (2016) Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 123(9):1974–1980

    Article  Google Scholar 

  74. Wen JC, Lee CS, Keane PA et al (2019) Forecasting future humphrey visual fields using deep learning. PLoS One 14(4):e0214875

    Article  Google Scholar 

  75. Bossuyt PM, Irwig L, Craig J, Glasziou P (2006) Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ 332(7549):1089–1092

    Article  Google Scholar 

  76. He M, Li Z, Liu C et al (2020) Deployment of artificial intelligence in real-world practice: opportunity and challenge. Asia Pac J Ophthalmol (Phila) 9(4):299–307

    Article  Google Scholar 

  77. Kim SJ, Port AD, Swan R et al (2018) Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Ophthalmol 63(5):618–637

    Article  Google Scholar 

  78. Perez-Munuzuri A, Fernandez-Lorenzo JR, Couce-Pico ML et al (2010) Serum levels of IGF1 are a useful predictor of retinopathy of prematurity. Acta Paediatr 99(4):519–525

    Article  Google Scholar 

  79. Cooke RW, Drury JA, Mountford R, Clark D (2004) Genetic polymorphisms and retinopathy of prematurity. Invest Ophthalmol Vis Sci 45(6):1712–1715

    Article  Google Scholar 

  80. Fielder AR, Shaw DE, Robinson J, Ng YK (1992) Natural history of retinopathy of prematurity: a prospective study. Eye 6(3):233

    Article  Google Scholar 

  81. Blencowe H, Vos T, Lee ACC et al (2013) Estimates of neonatal morbidities and disabilities at regional and global levels for 2010: introduction, methods overview, and relevant findings from the Global Burden of Disease study. Pediatr Res 74(Suppl 1):4–16

    Article  Google Scholar 

  82. Blencowe H, Lawn JE, Vazquez T et al (2013) Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res 74(S1):35–49

    Article  Google Scholar 

  83. Multicenter Trial of Cryotherapy for Retinopathy of Prematurity (1988) Preliminary results. Pediatrics 81(5):697–706

    Article  Google Scholar 

  84. Early Treatment for Retinopathy of Prematurity Cooperative Group (2003) Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 121(12):1684–1694

    Article  Google Scholar 

  85. Gilbert C (2008) Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev 84(2):77–82

    Article  Google Scholar 

  86. Gilbert C, Fielder A, Gordillo L et al (2005) Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs. Pediatrics 115(5):e518–ee25

    Article  Google Scholar 

  87. The Committee for the Classification of Retinopathy of Prematurity (1984) An international classification of retinopathy of prematurity. Arch Ophthalmol 102(8):1130–1134

    Article  Google Scholar 

  88. An International Classification of Retinopathy of Prematurity (1984) Pediatrics 74(1):127–133

    Article  Google Scholar 

  89. Patz A (1987) An international classification of retinopathy of prematurity: II. The classification of retinal detachment. Arch Ophthalmol 105(7):905

    Article  Google Scholar 

  90. International Committee for the Classification of Retinopathy of Prematurity (2005) The international classification of retinopathy of prematurity revisited. Arch Ophthalmol 123(7):991

    Article  Google Scholar 

  91. Good WV (2004) Early treatment for retinopathy of prematurity cooperative G. Final results of the early treatment for retinopathy of prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc 102:233–250

    Google Scholar 

  92. Mintz-Hittner HA, Kennedy KA, Chuang AZ (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364(7):603–615

    Article  Google Scholar 

  93. Demorest BH (1996) Retinopathy of prematurity requires diligent follow-up care. Surv Ophthalmol 41(2):175–178

    Article  Google Scholar 

  94. Sekeroglu MA, Hekimoglu E, Sekeroglu HT, Arslan U (2013) Retinopathy of prematurity: a nationwide survey to evaluate current practices and preferences of ophthalmologists. Eur J Ophthalmol 23(4):546–552

    Article  Google Scholar 

  95. Mills MD (2009) Retinopathy of prematurity malpractice claims. Arch Ophthalmol 127(6):803–804

    Article  Google Scholar 

  96. Wallace DK, Quinn GE, Freedman SF, Chiang MF (2008) Agreement among pediatric ophthalmologists in diagnosing plus and pre-plus disease in retinopathy of prematurity. J Am Assoc Pediatr Ophthalmol Strabismus 12(4):352–356

    Article  Google Scholar 

  97. Gschliesser A, Stifter E, Neumayer T et al (2015) Inter-expert and intra-expert agreement on the diagnosis and treatment of retinopathy of prematurity. Am J Ophthalmol 160(3):553–60.e3

    Article  Google Scholar 

  98. Fleck BW, Williams C, Juszczak E et al (2018) An international comparison of retinopathy of prematurity grading performance within the benefits of oxygen saturation targeting II trials. Eye (Lond) 32(1):74–80

    Article  Google Scholar 

  99. Gilbert C, Fielder A, Gordillo L et al (2005) Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs. Pediatrics 115(5):e51–e525

    Article  Google Scholar 

  100. Tan Z, Simkin S, Lai C, Dai S (2019) Deep learning algorithm for automated diagnosis of retinopathy of prematurity plus disease. Transl Vis Sci Technol 8(6):23

    Article  Google Scholar 

  101. Brown JM, Campbell JP, Beers A et al (2018) Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol 136(7):803–810

    Article  Google Scholar 

  102. Redd TK, Campbell JP, Brown JM et al (2018) Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol

    Google Scholar 

  103. Shah DN, Karp KA, Ying G-s et al (2009) Image analysis of posterior pole vessels identifies type 1 retinopathy of prematurity. J Am Assoc Pediatr Ophthalmol Strabismus 13(5):507–508

    Article  Google Scholar 

  104. Ting DSW, Wu W-C, Toth C (2019) Deep learning for retinopathy of prematurity screening. Br J Ophthalmol 103:577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingguang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, Z., Zhu, Z., He, Z., He, M. (2022). Artificial Intelligence in Ophthalmology. In: Raz, M., Nguyen, T.C., Loh, E. (eds) Artificial Intelligence in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-1223-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1223-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1222-1

  • Online ISBN: 978-981-19-1223-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics