Skip to main content

Materials Properties: Mechanical Characteristics

  • Chapter
  • First Online:
Advances in Polymeric Eco-Composites and Eco-Nanocomposites

Abstract

Cellulose-fibre-reinforced epoxy and vinyl-ester ecocomposites were fabricated in conjunction with inorganic nano-fillers. The effect of cellulose fibre and/or nano-filler dispersion on the mechanical properties of these composites has been characterized. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased as a result of fibre and nano-filler additions. In particular, the presence of cellulose fibres significantly increased the mechanical properties of ecocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abacha N, Kubouchi M, Tsuda K et al (2007) Performance of epoxy-nanocomposite under corrosive environment. Exp Polym Lett 1(6):364–369

    CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639

    CAS  Google Scholar 

  • Ahmad FN, Jaafar M, Palaniandy S et al (2008) Effect of particle shape of silica mineral on the properties of epoxy composites. Compos Sci Technol 68:346–353

    CAS  Google Scholar 

  • Alam P (2010) A mixtures’ model for porous particle–polymer composites. Mech Res Commun 37:389–393

    Google Scholar 

  • Alamri H, Low IM (2012a) Characterization of epoxy hybrid composites filled with cellulose fibres and nano-SiC. J Appl Polym Sci 126:E221–E231

    CAS  Google Scholar 

  • Alamri H, Low IM (2012b) Microstructural, mechanical and thermal characteristics of recycled cellulose fiber- halloysite-epoxy hybrid nanocomposites. Polym Compos 33:589–600

    CAS  Google Scholar 

  • Alhuthali A, Low IM, Dong C (2012) Characterisation of the water absorption, mechanical and thermal properties of recycled cellulose fibre reinforced vinyl-ester eco-nanocomposites. Compos B Eng 43(7):2772–2781

    CAS  Google Scholar 

  • Alhuthali A, Low IM (2021) Vinyl-ester composites reinforced with natural fibers and nanofillers, Chapter 9. In: Low I-M, Dong Y (eds) Composite materials. Elsevier, pp 227–244. ISBN 9780128205129

    Google Scholar 

  • Alonso-Montemayor FJ, Narro-Céspedes RI, Neira-Velázquez MG et al (2022) Biofibers for polymer reinforcement: Macro and micro mechanical points of view. In: Handbook of research on bioenergy and biomaterials: consolidated and green Processes. Apple Academic Press - CRC Press, pp 479–498

    Google Scholar 

  • Arul M, Sasikumar KSK, Sambathkumar M et al (2020) Mechanical and fracture study of hybrid natural fiber reinforced composite—coir and sugarcane leaf sheath. Mater Today Proc 33(7):2795–2797

    CAS  Google Scholar 

  • Ashori A, Nourbakhsh A (2009) Characteristics of wood–fiber plastic composites made of recycled materials. Waste Manage 29:1291–1295

    CAS  Google Scholar 

  • ASTM International (2007) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, in D790

    Google Scholar 

  • Athijayamani A, Thiruchitrambalam M, Natarajan U et al (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater Sci Eng, A 517:344–353

    Google Scholar 

  • Avilés F, Cauich-Rodríguez JV, Rodríguez-González JA et al (2011) Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. Express Polym Lett 5(9):766–776

    Google Scholar 

  • Bakare IO, Okieimen FE, Pavithran C et al (2010) Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des 31:4274–4280

    CAS  Google Scholar 

  • Bledzki AK, Faruk O (2004) Creep and impact properties of wood fibre–polypropylene composites: influence of temperature and moisture content. Compos Sci Technol 64:693–700

    CAS  Google Scholar 

  • Bozkurt E, Kaya E, TanoÄŸlu M (2007) Mechanical and thermal behaviour of non-crimp glass fibre reinforced layered clay/epoxy nanocomposites. Compos Sci Technol 67:3394–3403

    CAS  Google Scholar 

  • Buehler FU, Seferis JC (2000) Effect of reinforcement and solvent content on moisture absorption in epoxy composite materials. Composites A 31:741–748

    Google Scholar 

  • Ceretti A, Daniel V, da Silva E et al (2019) The role of dispersion technique and type of clay on the mechanical properties of clay/epoxy composites. Macromol Symp 383:1800055

    Google Scholar 

  • Chai H, Wang X, Rehman WU et al (2021) Study on water absorption and mechanical properties of CNF–Ti reinforced epoxy resin composites.Plast Rubber Compos.https://doi.org/10.1080/14658011.2021.2017127

  • Chandradass J, Ramesh Kumar M, Velmurugan R (2008) Effect of clay dispersion on mechanical, thermal and vibration properties of glass fiber-reinforced vinyl ester composites. J Reinf Plast Compos 27(15):1585–1601

    CAS  Google Scholar 

  • Chen B, Evans JRG (2006) Elastic moduli of clay platelets. Scripta Mater 54:1581–1585

    CAS  Google Scholar 

  • Chen C, Justice RS, Schaefer DW et al (2008) Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties. Polymer 49:3805–3815

    CAS  Google Scholar 

  • Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos A Appl Sci Manuf 40(12):2013–2019

    Google Scholar 

  • Cohen LJ, Ishai O (1967) The elastic properties of three-phase composites. J Compos Mater 1(4):390–403

    Google Scholar 

  • De Rosa IM, Santali C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31:2397–2405

    Google Scholar 

  • Deng S, Tang Y (2010) Increasing load-bearing capacity of wood-plastic composites by sandwiching natural and glass fabrics. J Reinf Plast Compos 29(20):3133–3148

    CAS  Google Scholar 

  • Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69:2497

    CAS  Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    CAS  Google Scholar 

  • Dong Y, Chaudhary D, Ploumis C et al (2011) Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Composites A 42:1483–1492

    Google Scholar 

  • Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites A 35(11):1267–1276

    Google Scholar 

  • Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Composites A 37(10):1660–1671

    Google Scholar 

  • Fu SY, Feng XQ, Lauke B et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961

    Google Scholar 

  • Gantenbein D, Schoelkopf J, Matthews GP et al (2011) Determining the size distribution-defined aspect ratio of rod-like particles. Appl Clay Sci 53:538–543

    CAS  Google Scholar 

  • Guo Q, Cheng B, Kortschot M et al (2010) Performance of long Canadian natural fibers as reinforcements in polymers. J Reinf Plast Compos 29(21):3197–3207

    CAS  Google Scholar 

  • Hashim MKR, Abdul Majid MS, Ridzuan MJM (2021) Review of fatigue responses of fiber-reinforced polymer (FRP) composite. In: Jawaid M, Hamdan A, Hameed Sultan MT (eds) Structural health monitoring system for synthetic, hybrid and natural fiber composites. Composites science and technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8840-2_9

  • Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69:330–334

    Google Scholar 

  • Herrera-Franco PJ, Valadez-González A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Composites B 36(8):597–608

    Google Scholar 

  • Hossain MK, Imran KA, Hosur MV et al (2011) Degradation of mechanical properties of conventional and nanophased carbon-epoxy composites in seawater. J Eng Mater Technol 133(4):41004

    Google Scholar 

  • Ismail H, Pasbakhsh P, Fauzi MNA et al (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylenediene monomer (EPDM) nanocomposites. Polym Testing 27:841–850

    CAS  Google Scholar 

  • Kaully T, Siegmann A, Shacham D (2008) Mechanical behavior of highly filled natural CaCO3 composites: effect of particle size distribution and interface interactions. Polym Compos 29:396–408

    CAS  Google Scholar 

  • Khan SU, Iqbal K, Munir A et al (2010) Quasi-static and impact fracture behaviours of CFRPs with nanoclay-filled epoxy matrix. Composites A 42:53–264

    Google Scholar 

  • Khan SU, Iqbal K, Munir A et al (2011) Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites A 42:253–264

    Google Scholar 

  • Kim HJ, Seo DW (2006) Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites. Int J Fatigue 28(10):1307–1314

    CAS  Google Scholar 

  • Kim BC, Park SW, Lee DG (2008) Fracture toughness of the nano-particle reinforced epoxy composite. Compos Struct 86:69–77

    Google Scholar 

  • Kumar PSS, Allamraju KV (2019) A review of natural fiber composites (jute, sisal, kenaf). Mater Today Proc 18(7):2556–2562

    Google Scholar 

  • Kumar S, Prasad L, Patel VK et al (2021) Physico-mechanical properties and Taguchi optimized abrasive wear of alkali treated and fly ash reinforced Himalayan Agave fiber polyester composite. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1982818

    Article  Google Scholar 

  • Kumar P, Ram CS, Srivastava JP et al (2022) Physical and chemical properties of cotton fiber-based composites.https://doi.org/10.1002/9783527832996.ch8

  • Le Guen MJ, Newman RH (2007) Pulped phormium tenax leaf fibres as reinforcement for epoxy composites. Composites A 38:2109–2115

    Google Scholar 

  • Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/Poly(l-lactide) bio-composites. Compos Sci Technol 70(2):231–239

    Google Scholar 

  • Lee JH, Rhee KY, Lee JH (2010) Effects of moisture absorption and surface modification using 3-aminopropyltriethoxysilane on the tensile and fracture characteristics of MWCNT/epoxy nanocomposites. Appl Surf Sci 256:7658–7667

    CAS  Google Scholar 

  • Low IM (1990a) Effects of residual stresses on the failure micromechanisms in toughened epoxy systems. J Mater Sci 25(4):2144–2148

    CAS  Google Scholar 

  • Low IM (1990b) Toughening of epoxies by thermal expansion mismatch. J Appl Polym Sci 39:759–762

    CAS  Google Scholar 

  • Low IM, Somers J, Kho HS et al (2009) Fabrication and properties of recycled cellulose fibre-reinforced epoxy composites. Compos Interfaces 16(7–9):659–669

    CAS  Google Scholar 

  • Lu SR, Jiang YM, Wei C (2009) Preparation and characterization of EP/SiO2 hybrid materials containing PEG flexible chain. J Mater Sci 44:4047

    CAS  Google Scholar 

  • Lui Q, Hughes M (2008) The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites A 39:1644–1652

    Google Scholar 

  • Ma J, Mo MS, Du XS et al (2008) Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49(16):3510–3523

    CAS  Google Scholar 

  • Maleque MA, Belal FY (2007) Mechanical properties study of pseudo-stem banana fibre reinforced epoxy composite. Arab J Sci Eng 32(2B):359–364

    CAS  Google Scholar 

  • Masouras K, Silikas N, Watts DC (2008) Correlation of filler content and elastic properties of resin-composites. Dent Mater 24:932–939

    CAS  Google Scholar 

  • McGrath M, Vilaiphand W, Vaihola S et al (2004) Synthesis and properties of clay-ZrO2-cellulose fibre-reinforced polymeric nano-hybrids. In: Structural integrity and fracture: proceedings off the international conference, SIF 2004, pp 265–270

    Google Scholar 

  • Meng J, Hu X (2004) Synthesis and exfoliation of bismaleimide–organoclay nanocomposites. Polymer 45:9011–9018

    CAS  Google Scholar 

  • Mishra S, Mohanty AK, Drzal LT et al (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385

    CAS  Google Scholar 

  • Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32:3076–3084

    CAS  Google Scholar 

  • Mylsamy B, Palaniappan SK, Subramani SP et al (2019) Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. J Market Res 8(6):6021–6028

    CAS  Google Scholar 

  • Nassar MMA, Alzebdeh KI, Pervez T et al (2021) Progress and challenges in sustainability, compatibility, and production of eco-composites: a state-of-art review. J Appl Polym Sci 138:e51284. https://doi.org/10.1002/app.51284

    Article  CAS  Google Scholar 

  • Ning NY, Yin QJ, Luo F et al (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48:7374–7384

    CAS  Google Scholar 

  • Piechota K, Czaja K, BÄ…czek M et al (2021) Effect of a new amido-imidazolium compound as a clay modifier on properties of polypropylene composites. https://doi.org/10.1002/pc.26428

  • Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fibre reinforced polyester composites. Compos Sci Technol 63:283–293

    CAS  Google Scholar 

  • Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5:295–307

    CAS  Google Scholar 

  • Qi B, Zhang QX, Bannister M et al (2006) Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos Struct 75:514–519

    Google Scholar 

  • Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166(2):772–778

    CAS  Google Scholar 

  • Reddy RA, Yoganandam K, Mohanavel V (2020) Effect of chemical treatment on natural fiber for use in fiber reinforced composites—review. Mater Today Proc 33(7):2996–2999

    CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Lui Y et al (2001) The effect of fibre treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    CAS  Google Scholar 

  • Ruoyuan S, Teruo K, Haruhiro I (2010) Papermaking from waste silk and its application as reinforcement of green composites. J Text Eng 56(3):71–76

    Google Scholar 

  • Saber D, Alghtani AH, Ahmed EM et al (2021) Enhancement of barrier and mechanical performance of steel coated with epoxy filled with micron and nano alumina fillers. Mat Res. https://doi.org/10.1590/1980-5373-mr-2021-0413

  • Sánchez-Soto M, Pagés P, Lacorte T et al (2007) Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites. Compos Sci Technol 67:1974–1985

    Google Scholar 

  • Satapathy A, Jha AK, Mantry S et al (2010) Processing and characterization of jute-epoxy composites reinforced with SiC derived from rice husk. J Reinf Plast Compos 29(18):2869–2878

    CAS  Google Scholar 

  • Shahinur S, Hasan M (2020) Jute/coir/banana fiber reinforced bio-composites: critical review of design, fabrication, properties and applications. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, pp 751–756

    Google Scholar 

  • Silva RV, Spinelli D, Bose WW et al (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Compos Sci Technol 66:1328–1335

    CAS  Google Scholar 

  • Singh R, Singh B, Gupta M et al (2021) Mechanical properties and dimensional stability of jute/VER-isocyanate hybrid matrix composites. Polym Polym Compos 29:S803–S816

    CAS  Google Scholar 

  • Sivaperumal R, Jancirani J (2021) Characterization of amino silane modified ramie fibre, OMMT nanoclay-reinforced epoxy resin composite. Silicon. https://doi.org/10.1007/s12633-021-01502-9

  • Slack GA, Bartram SF (1975) Thermal expansion of some diamondlike crystals. J Appl Phys 46(1):89–98

    CAS  Google Scholar 

  • Sombatsompop N, Chaochanchaikul K (2004) Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites. Polym Int 53:1210–1218

    CAS  Google Scholar 

  • Stocchi A, Bernal C, Vazquez A et al (2007) A silicone treatment compared to traditional natural fiber treatments: effect on the mechanical and viscoelastic properties of jute–vinyl ester laminates. J Compos Mater 41(16):2005–2024

    CAS  Google Scholar 

  • Subramaniyan AK, Sun CT (2007) Toughening polymeric composites using nanoclay: crack tip scale effects on fracture toughness. Composites A 38:34–43

    Google Scholar 

  • Suppakarn N, Jarukumjorn K (2009) Mechanical properties and flammability of sisal/PP composites: effect of flame-retardant type and content. Composites B 40:613–618

    Google Scholar 

  • Tang Y, Deng S, Ye L et al (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos Part A Appl Sci Manuf 42(4):345–354

    Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    CAS  Google Scholar 

  • Wang K, Chen L, Wu J et al (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    CAS  Google Scholar 

  • Wang L, Wang K, Chen L et al (2006) Hydrothermal effects on the thermomechanical properties of high-performance epoxy/clay nanocomposites. Polym Eng Sci 46(2):215–221

    CAS  Google Scholar 

  • Wetzel B, Rosso P, Haupert F et al (2006) Epoxy nanocomposites—fracture and toughening mechanisms. Eng Fract Mech 73(16):2375–2398

    Google Scholar 

  • Xu Y, Hoa SV (2008) Mechanical properties of carbon fibre reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861

    CAS  Google Scholar 

  • Yan W, Lin RJT, Bhattacharyya D (2006) Particulate reinforced rotationally moulded polyethylene composites—mixing methods and mechanical properties. Compos Sci Technol 66:2080–2088

    CAS  Google Scholar 

  • Yasmin A, Luo JJ, Abot JL et al (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66(14):2415–2422

    CAS  Google Scholar 

  • Ye Y, Chen H, Wu J et al (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433

    CAS  Google Scholar 

  • Ye Y, Chen H, Wu J et al (2011) Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix. Compos Sci Technol 71:717–723

    CAS  Google Scholar 

  • Zainuddin S, Hosura MV, Zhoua Y et al (2010) Experimental and numerical investigations on flexural and thermal properties of nanoclay–epoxy nanocomposites. Mater Sci Eng A 527:7920–7926

    Google Scholar 

  • Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Composites A 39:602–611

    Google Scholar 

  • Zhao S, Schadler LS, Hillborg H et al (2008) Improvements and mechanisms of fracture and fatigue properties of well-dispersed alumina/epoxy nanocomposites. Compos Sci Technol 68:2976–2982

    CAS  Google Scholar 

  • Zuiderduin WCJ, Westzaan C, Huétink J et al (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275

    CAS  Google Scholar 

  • Zulfli NHM, Shyang CW (2010) Flexural and morphological properties of epoxy/glass fibre/silane-treated organo montmorillonite composites. J Phys Sci 21:41–50

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. E. Miller from Applied Physics at Curtin University of Technology for assistance with SEM. Authors are also grateful to Dr. Rachid Sougrat from King Abdullah University of Science and Technology for performing the TEM images. Finally, we thank Andreas Viereckl of Mechanical Engineering at Curtin University for the help with Charpy Impact Test. We also thank Dr. Zied Alothman from King Saud University for assistance with TGA experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to It-Meng Low .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Low, IM., Alamri, H.R., Alhuthali, A.M.S. (2022). Materials Properties: Mechanical Characteristics. In: Advances in Polymeric Eco-Composites and Eco-Nanocomposites. Advanced Ceramics and Composites, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-19-1173-6_4

Download citation

Publish with us

Policies and ethics