Skip to main content

Geo-spatial Assessment of Inherent Smart Urban Attributes of Traditional Neighborhood-Level Communities in India

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 294))

Abstract

City-making is a process in which several endogenous and exogenous variables associated with socio-economic, environmental, historical, and physical parameters play a significant role. The neoliberal and market-led notion of smart cities is highly criticized by many scholars for its polarized and inequitable approach to development. The traditional communities have continued for generations and inherit a unique living and residential culture bestowing them with an inherent smartness quotient. This concept of smartness for city planning is even more critical during the present times to understand the impact of the spatial structure of existing cities to deal with the COVID-19 outbreak. Authors identify a strong need to merge the two concepts of traditional communities and urban smartness for a holistic approach to building smart communities. This study aims to assess the smart spatial attributes of the traditional neighborhood-level urban communities such as compactness, walkability, and diversity. Primary household surveys were conducted in the walled city of Alwar, Rajasthan, India. The case study reveals compactly designed residential enclaves known as mohallas with mixed land use. The indigenous spatial elements such as squares (chowks), markets (bazaars), and streets (gali) proved to be crucial community gathering places for these settlements. Such zero-level assessment of existing socio-cultural and spatial attributes may enable the appropriate integration of intelligent technologies into our urban systems. Authors recommend harnessing the untapped potential of traditional communities in culturally rich countries like India to achieve the goals of a smart community.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. UN-Habitat.: State of The World’s Cities 2012/2013 Prosperity of Cities (2013)

    Google Scholar 

  2. Zhang, X.Q.: The trends, promises and challenges of urbanisation in the world. Habitat Int. 54(13), 241–252 (2016). https://doi.org/10.1016/j.habitatint.2015.11.018

    Article  Google Scholar 

  3. The United Nations Department of Economic and Social Affairs.: 2018 Revision of World Urbanization Prospects (2018)

    Google Scholar 

  4. Hoelscher, K.: The evolution of the smart cities agenda in India. Int. Area Stud. Rev. 19(1), 28–44 (2016). https://doi.org/10.1177/2233865916632089

    Article  Google Scholar 

  5. UN-Habitat.: People-Centered Smart Cities (2021)

    Google Scholar 

  6. Alawadhi, S., et al.: Building understanding of smart city initiatives. Lecture Notes Computer Science (including Subseries Lecture Notes Artificial Intelligence Lecture Notes Bioinformatics), vol. 7443 LNCS, pp. 40–53 (2012). https://doi.org/10.1007/978-3-642-33489-4_4

  7. Angelidou, M.: The role of smart city characteristics in the plans of fifteen cities. J. URBAN Technol. 24(4), 3–28 (2017). https://doi.org/10.1080/10630732.2017.1348880

    Article  Google Scholar 

  8. Martin, C.J., Evans, J., Karvonen, A.: Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 133, 269–278 (2018). https://doi.org/10.1016/j.techfore.2018.01.005

    Article  Google Scholar 

  9. Nilssen, M.: To the smart city and beyond? Developing a typology of smart urban innovation. Technol. Forecast. Soc. Change 142, 98–104 (2019). https://doi.org/10.1016/j.techfore.2018.07.060

  10. Tonkiss, F.: Cities by Design: The Social Life of Urban Form. Polity Press, Cambridge (2013)

    Google Scholar 

  11. Hollands, R.G.: Will the real smart city please stand up? City 12(3), 303–320 (2008). https://doi.org/10.1080/13604810802479126

    Article  Google Scholar 

  12. Garcia-Ayllon, S., Miralles, J.L.: New strategies to improve governance in territorial management: evolving from ‘smart cities’ to ‘smart territories.’ Procedia Eng. 118, 3–11 (2015). https://doi.org/10.1016/j.proeng.2015.08.396

    Article  Google Scholar 

  13. United Nations Environment Programme.: Issue brief SDG 11 (2017). https://doi.org/10.1596/978-1-4648-1080-0_ch11

  14. de Jong, M., Joss, S., Schraven, D., Zhan, C., Weijnen, M.: Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 109, 25–38 (2015). https://doi.org/10.1016/j.jclepro.2015.02.004

    Article  Google Scholar 

  15. Brundtland, G.H.: Report of the World Commission on Environment and Development: Our Common Future (1987)

    Google Scholar 

  16. Woodbridge, M.: Cities and the Sustainable Development Goals (2016)

    Google Scholar 

  17. Dhingra, M., Chattopadhyay, S.: Advancing smartness of traditional settlements- case analysis of indian and arab old cities. Int. J. Sustain. Built Environ. 5, 549–563 (2016). https://doi.org/10.1016/j.ijsbe.2016.08.004

    Article  Google Scholar 

  18. Aurigi, A., Odendaal, N.: From ‘Smart in the Box’ to ‘Smart in the City’: rethinking the socially sustainable smart city in context. J. Urban Technol., pp. 1–16 (2020). https://doi.org/10.1080/10630732.2019.1704203

  19. United for Smart Sustainable Cities.: Connecting cities and communities with the Sustainable Development Goals (2017)

    Google Scholar 

  20. NASSCOM.: Integrated ICT and Geo-Spatial Technologies Framework for the 100 Smart Cities Mission (2015)

    Google Scholar 

  21. Angelidou, M.: Smart city policies: a spatial approach. Cities 41, 3–11 (2014). https://doi.org/10.1016/j.cities.2014.06.007

    Article  Google Scholar 

  22. Angelidou, M.: Smart cities: a conjuncture of four forces. Cities 47, 95–106 (2015). https://doi.org/10.1016/j.cities.2015.05.004

    Article  Google Scholar 

  23. Angelidou, M.: Smart City Strategy: Rio de Janeiro (Brazil) (2015). http://www.urenio.org/2015/03/23/smart-city-strategy-rio-de-janeiro-brazil/. Accessed 01 Sep. 2016

  24. Audirac, I.: Information technology and urban form: challenges to smart growth. Int. Reg. Sci. Rev. 28(2), 119–145 (2005). https://doi.org/10.1177/0160017604273624

    Article  Google Scholar 

  25. Barrionuevo, J.M., Berrone, P., Ricart, J.E.: Smart cities, sustainable progress. IESE Insight 14(14), 50–57 (2012)

    Article  Google Scholar 

  26. Gaffney, C., Robertson, C.: Smarter than smart: Rio de Janeiro’s flawed emergence as a smart city. J. Urban Technol. 0732(April), 1–18 (2016). https://doi.org/10.1080/10630732.2015.1102423

    Article  Google Scholar 

  27. Jaffe, E.: 4 lessons from Rio’s ‘flawed’ smart cities initiative (2016). https://medium.com/sidewalk-talk/4-lessons-from-rios-flawed-smart-cities-initiative-31cbf4e54b72#.kaobtxl58

  28. Yigitcanlar, T., Lee, S.H.: Korean ubiquitous-eco-city: a smart-sustainable urban form or a branding hoax? Technol. Forecast. Soc. Change 89, 100–114 (2014). https://doi.org/10.1016/j.techfore.2013.08.034

    Article  Google Scholar 

  29. Mahizhnan, A.: Smart cities. Cities 16(1), 13–18 (1999). https://doi.org/10.1016/S0264-2751(98)00050-X

    Article  Google Scholar 

  30. Fietkiewicz, K.J., Stock, W.G.: How ‘smart’ are Japanese Cities? An empirical investigation of infrastructures and governmental programs in Tokyo, Yokohama, Osaka, and Kyoto. In: Proceedings of Annual Hawaii International Confernce System Science, vol. 2015-March, pp. 2345–2354 (2015). https://doi.org/10.1109/HICSS.2015.282

  31. Ishida, T.: Activities and technologies in digital city Kyoto. Lect. Notes Comput. Sci. 3081, 166–187 (2005). https://doi.org/10.1007/11407546_8

    Article  Google Scholar 

  32. Bakici, T., Almirall, E., Wareham, J.: A smart city initiative: the case of Barcelona. J. Knowl. Econ. 4(2), 135–148 (2013). https://doi.org/10.1007/s13132-012-0084-9

    Article  Google Scholar 

  33. Neyazi, Y.: Deconstruction of Urban Space in Saudi Cities, pp. 1–14 (2008)

    Google Scholar 

  34. Kiet, A.: Arab culture and urban form. Focus (Madison) 7(1), 36–45 (2010)

    Google Scholar 

  35. Hajer, M.A., Zonneveld, W.: Spatial planning in the network society-rethinking the principles of planning in the Netherlands. Eur. Plan. Stud. 8(3), 337–355 (2000). https://doi.org/10.1080/713666411

    Article  Google Scholar 

  36. Van Der Valk, A.: The Dutch planning experience. Landsc. Urban Plan. 58(2–4), 201–210 (2002). https://doi.org/10.1016/S0169-2046(01)00221-3

    Article  Google Scholar 

  37. Aurigi, A., Odendaal, N.: “From ``Smart in the Box{’’} to ``Smart in the City{’’}: Rethinking the Socially Sustainable Smart City in Context. J. Urban Technol. https://doi.org/10.1080/10630732.2019.1704203

  38. Das, D.: In pursuit of being smart? A critical analysis of India’s smart cities endeavor. URBAN Geogr. 41(1), 55–78 (2020). https://doi.org/10.1080/02723638.2019.1646049

    Article  Google Scholar 

  39. Rajput, S., Arora, K.: Sustainable Smart Cities in India: Challenges and Future Perspectives (2017)

    Google Scholar 

  40. Dhingra, M., Chattopadhyay, S.: A systematic text-analytics-based meta-synthesis approach for smart urban development. Int. J. Urban Plan. Smart Cities 3(1) (2021)

    Google Scholar 

  41. Dhingra, M., Chattopadhyay, S.: A fuzzy approach for assessment of smart socio-cultural attributes of a historic urban landscape: case study of Alwar walled city in India. Sustain. Cities Soc. 69, 102855 (2021). https://doi.org/10.1016/j.scs.2021.102855

  42. Dhingra, M., Chattopadhyay, S.: Fuzzy approach for assessment of smart urban attributes of traditional urban systems in India. In: International Conference On Resilient & Liveable City Planning (RLCP—2020) Transforming Urban Systems, pp. 323–326 (2021)

    Google Scholar 

  43. Dhingra, M., Singh, M.K., Chattopadhyay, S.: Macro level characterization of historic urban landscape : case study of Alwar walled city City. Cult. Soc. 9, 39–53 (2017). https://doi.org/10.1016/j.ccs.2016.10.001

    Article  Google Scholar 

  44. Kostof, S.: The City Shaped: Urban Patterns and Meanings throughout History. Boston (1991)

    Google Scholar 

  45. Wilson, P.J.: The Domestication of the Human Species. Yale University Press (2009)

    Google Scholar 

  46. Center for Early Modern History, University of Minnesota.: City Walls: The Urban Enceinte in Global Perspective. Cambridge University Press (2000)

    Google Scholar 

  47. Upadhyaya, V., Jakhanwal, M.P.: Traditional walled cities of Rajasthan India: a sustainable planning concept. Int. J. Eng. Res. Manag. Technol. 2(3), 204–217 (2015)

    Google Scholar 

  48. NCR Planning Board.: Economic Profile of NCR (2015) (Online). Available: http://ncrpb.nic.in/pdf_files/FinalReport of study of economic profile_17122015.pdf

  49. Town Planning Department.: Master Plan 2011–2031. Alwar (2011)

    Google Scholar 

  50. Lall, S.: Settlements of the Poor and Guidelines for Urban Upgrading: Case Study of Alwar, a Secondary Town (2001)

    Google Scholar 

  51. Maps of India (2021). www.mapsofindia.com

  52. Dhingra, M., Singh, M.K., Chattopadhyay, S.: Rapid assessment tool for traditional Indian neighbourhoods: a case study of Alwar walled city in Rajasthan. Sustain. Cities Soc. 26, 364–382 (2016). https://doi.org/10.1016/j.scs.2016.06.015

    Article  Google Scholar 

  53. Schwarz, N.: Urban form revisited-Selecting indicators for characterising European cities. Landsc. Urban Plan. 96, 29–47 (2010). https://doi.org/10.1016/j.landurbplan.2010.01.007

    Article  Google Scholar 

  54. Lan, T., Shao, G., Xu, Z., Tang, L., Sun, L.: Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol. Indic. 121, 107177 (2021). https://doi.org/10.1016/j.ecolind.2020.107177

    Article  Google Scholar 

  55. Neuman, M.: The compact city fallacy. J. Plan. Educ. Res. 25(1), 11–26 (2005). https://doi.org/10.1177/0739456X04270466

    Article  MathSciNet  Google Scholar 

  56. Kotharkar, R., Bahadure, P., Sarda, N.: Measuring compact urban form: a case of Nagpur city, India. Sustain. 6, 4246–4272 (2014). https://doi.org/10.3390/su6074246

    Article  Google Scholar 

  57. Guan, C.: Spatial metrics of urban form: measuring compact cities in China. Vertical Urbanism 2018, 189–209 (2017)

    Google Scholar 

  58. Clifton, K., Ewing, R., Knaap, G.J., Song, Y.: Quantitative analysis of urban form: a multidisciplinary review. J. Urban. Int. Res. Placemaking Urban Sustain. 1(1), 17–45 (2008). https://doi.org/10.1080/17549170801903496

    Article  Google Scholar 

  59. Abdullahi, S., Pradhan, B., Jebur, M.N.: GIS-based sustainable city compactness assessment using integration of MCDM, Bayes theorem and RADAR technology. Geocarto Int. 30(4), 365–387 (2015). https://doi.org/10.1080/10106049.2014.911967

    Article  Google Scholar 

  60. Ogrodonik, K.: Indicators of the compact city concept—necessary data and the possibility of application. Archit. Civ. Eng. Environ. 12(4), 23–36 (2020). https://doi.org/10.21307/acee-2019-049

    Article  Google Scholar 

  61. Mardiah, W.M.R.W.N.: Compact urban form for sociability in urban neighbourhoods. Int. J. Soc. Sci. Humanit. 5(10), 822–826 (2015). https://doi.org/10.7763/ijssh.2015.v5.564

    Article  Google Scholar 

  62. Nam, K., Lim, U., Kim, B.H.S.: ‘Compact’ or ‘Sprawl’ for sustainable urban form? Measuring the effect on travel behavior in Korea. Ann. Reg. Sci. 49, 157–173 (2012). https://doi.org/10.1007/s00168-011-0443-7

    Article  Google Scholar 

  63. Dieleman, F.M., Dijst, M., Burghouwt, G.: Urban form and travel behaviour: micro-level household attributes and residential context. Urban Stud. 39(3), 507–527 (2002). https://doi.org/10.1080/00420980220112801

    Article  Google Scholar 

  64. Coorey, S.B.A., Lau, S.S.Y.: Urban compactness and its progress toward sustainability: the Hong Kong scenario. Sustain. Dev. Plan. 1(87), 87–97 (2005)

    Google Scholar 

  65. Miller, E.J., Ibrahim, A.: Urban form and vehicular travel: some empirical findings. Transp. Res. Rec. 1617, 18–27 (1998). https://doi.org/10.3141/1617-03

    Article  Google Scholar 

  66. Liaqat, H., Waheed, A., Malik, N.A., Vohra, I.A.: Measuring urban sustainability through compact city approach: a case study of Lahore. J. Sustain. Dev. Stud. 10(2), 61–81 (2017)

    Google Scholar 

  67. Lee, J., Kurisu, K., An, K., Hanaki, K.: Development of the compact city index and its application to Japanese cities. Urban Stud. (2014). https://doi.org/10.1177/0042098014536786

    Article  Google Scholar 

  68. Kang, J.E., Yoon, D.K., Bae, H.J.: Evaluating the effect of compact urban form on air quality in Korea. Environ. Plan. B Urban Anal. City Sci. (2019). https://doi.org/10.1177/2399808317705880

  69. Ahlfeldt, G., Pietrostefani, E.: Demystifying Compact Urban Growth: Evidence From 300 Studies From Across the World (2017) (Online). Available: http://newclimateeconomy.net/content/cities-working-papers.%0Anewclimateeconomy.net/content/cities-working-papers

  70. Shirazi, M.R.: Compact urban form: neighbouring and social activity. Sustain. 12(5) (2020). https://doi.org/10.3390/su12051987

  71. Zhao, F., Tang, L., Qiu, Q., Wu, G.: The compactness of spatial structure in Chinese cities: measurement, clustering patterns and influencing factors. Ecosyst. Heal. Sustain. 6(1) (2020). https://doi.org/10.1080/20964129.2020.1743763

  72. Institut national de santé publique du Québec.: Geographical Indicators of the Built Environment and Services Environment Influencing Physical Activity, Diet and Body Weight (2010)

    Google Scholar 

  73. Koohsari, M.J., Oka, K., Owen, N., Sugiyama, T.: Natural movement: a space syntax theory linking urban form and function with walking for transport. Heal. Place 58(102072) (2019). https://doi.org/10.1016/j.healthplace.2019.01.002

  74. Dettlaff, W.: Space syntax analysis—methodology of understanding the space. PhD Interdiscip. J., p. 8 (2014)

    Google Scholar 

  75. Moura, F., Cambra, P., Gonçalves, A.B.: Measuring walkability for distinct pedestrian groups with a participatory assessment method: a case study in Lisbon. Landsc. Urban Plan. 157, 282–296 (2017). https://doi.org/10.1016/j.landurbplan.2016.07.002

    Article  Google Scholar 

  76. Dörrzapf, L., Kovács-Győri, A., Resch, B., Zeile, P.: Defining and assessing walkability: a concept for an integrated approach using surveys, biosensors and geospatial analysis. Urban Dev. Issues 62, 5–15 (2019). https://doi.org/10.2478/udi-2019-0008

    Article  Google Scholar 

  77. Lee, S., Talen, E.: Measuring walkability: a note on auditing methods. J. Urban Des. 19(3), 368–388 (2014). https://doi.org/10.1080/13574809.2014.890040

    Article  Google Scholar 

  78. Report, T.S., Zealanders, N.: Soc. Rep. 2010, 4–9 (2010)

    Google Scholar 

  79. Rice, J.C., Rochet, M.J.: A framework for selecting a suite of indicators for fisheries management. ICES J. Mar. Sci. 62(3), 516–527 (2005). https://doi.org/10.1016/j.icesjms.2005.01.003

    Article  Google Scholar 

  80. Brown, D.: Good Practice Guidelines for Indicator Development and Reporting. Busan, Korea (2009) (Online). Available: http://www.oecd.org/site/progresskorea/43586563.pdf

  81. Moore, G.H.: Criteria for selecting indicators. In: Statistical Indicators of Cyclical Revivals and Recessions, pp. 20–31 (1950)

    Google Scholar 

  82. Macdonald, G.: Criteria for Selection of High-Performing Indicators: A Checklist to Inform Monitoring and Evaluation (2016) (Online). Available: https://www.wmich.edu/sites/default/files/attachments/u350/2014/Indicator_checklist.pdf

  83. Selection of Indicators.: Measure Evaluation (2020). https://www.measureevaluation.org/prh/rh_indicators/overview/rationale2

  84. Cooper, C., Chiaradia, A., Webster, C.: Spatial Design Network Analysis software, version 3.3. Cardiff University (2016) (Online). Available: http://www.cardiff.ac.uk/sdna/

  85. Jiang, B.: Axwoman 6.3: An ArcGIS Extension for Urban Morphological Analysis. University of Gävle, Sweden (2015) (Online). Available: http://giscience.hig.se/binjiang/Axwoman/

  86. depthmapX development team.: depthmapX (Version 0.6.0) (Computer software) (2017)

    Google Scholar 

  87. Lefebvre-Ropars, G., Morency, C.: Walkability: which measure to choose, where to measure it, and how? Transp. Res. Rec. 2672(35), 139–150 (2018). https://doi.org/10.1177/0361198118787095

    Article  Google Scholar 

  88. Kaza, N.: Landscape shape adjusted compactness index for urban areas. GeoJournal 9, 2020 (1961). https://doi.org/10.1007/s10708-020-10262-9

    Article  Google Scholar 

  89. Li, W., Goodchild, M.F., Church, R.: An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 27(6), 1227–1250 (2013). https://doi.org/10.1080/13658816.2012.752093

    Article  Google Scholar 

  90. Angel, S., Arango Franco, S., Liu, Y., Blei, A.M.: The shape compactness of urban footprints. Prog. Plann. 139 (2020). https://doi.org/10.1016/j.progress.2018.12.001

  91. Angel, S., Franco, S.A., Liu, Y., Alejandro, M.B., Zhang, X.: The Shape Compactness of Urban Extents (2018)

    Google Scholar 

  92. Montero, R.S., Bribiesca, E.: State of the art of compactness and circularity measures. In: International Mathematical Forum, vol. 4(27), pp. 1305–1335 (2009) (Online). Available: http://www.m-hikari.com/imf-password2009/25-28-2009/bribiescaIMF25-28-2009.pdf

  93. Angel, S., Parent, J., Civco, D.L.: Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54(4), 441–461 (2010). https://doi.org/10.1111/j.1541-0064.2009.00304.x

    Article  Google Scholar 

  94. Huang, J., Lu, X.X., Sellers, J.M.: A global comparative analysis of urban form: applying spatial metrics and remote sensing. Landsc. Urban Plan. 82, 184–197 (2007). https://doi.org/10.1016/j.landurbplan.2007.02.010

    Article  Google Scholar 

  95. Frank, L.D., Schmid, T.L., Sallis, J.F., Chapman, J., Saelens, B.E.: Linking objectively measured physical activity with objectively measured urban form: findings from SMARTRAQ. Am. J. Prev. Med. 28(2 SUPPL. 2), 117–125 (2005). https://doi.org/10.1016/j.amepre.2004.11.001

    Article  Google Scholar 

  96. Song, Y., Merlin, L., Rodriguez, D.: Comparing measures of urban land use mix. Comput. Environ. Urban Syst. 42, 1–13 (2013). https://doi.org/10.1016/j.compenvurbsys.2013.08.001

    Article  Google Scholar 

  97. Manaugh, K., Kreider, T.: What is mixed use? Presenting an interaction method for measuring land use mix. J. Transp. Land Use 6(1), 63–72 (2013). https://doi.org/10.5198/jtlu.v6i1.291

    Article  Google Scholar 

  98. Mavoa, S., et al.: Identifying appropriate land-use mix measures for use in a national walkability index. J. Transp. Land Use 11(1), 681–700 (2018). https://doi.org/10.5198/jtlu.2018.1132

    Article  Google Scholar 

  99. Zagorskas, J.: GIS-based modelling and estimation of land use mix in urban environment 2 problem formulation. Int. J. Environ. Sci. 1, 284–293 (2016)

    Google Scholar 

  100. Hillier, B., Leaman, A., Stansall, P., Bedford, M.: Space syntax. Environ. Plan. B 3, 147–185 (1976)

    Article  Google Scholar 

  101. Telega, A.: Urban street network analysis using space syntax in GIS-Cracow case study. In: Proceedings - 2016 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2016, pp. 282–287 (2016). https://doi.org/10.1109/BGC.Geomatics.2016.57

  102. Esposito, D., Santoro, S., Camarda, D.: Agent-based analysis of urban spaces using space syntax and spatial cognition approaches: a case study in Bari, Italy. Sustainability 12(4625) (2020). https://doi.org/10.3390/su12114625

  103. Bafna, S.: Space syntax: a brief introduction to its logic and analytical techniques. Environ. Behav. 35(1), 17–29 (2003). https://doi.org/10.1177/0013916502238863

    Article  Google Scholar 

  104. Lee, S., Seo, K.W.: Combining space syntax with GIS-based built environment measures in pedestrian walking activity. In: Proceedings of the Ninth International Space Syntax Symposium (2013)

    Google Scholar 

Download references

Acknowledgements

Authors thank the editors and reviewers for their valuable comments. This study was undertaken with the constant research support of the Ministry of Human Resources Development (MHRD), Government of India.

Statements and Declarations

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Dhingra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhingra, M., Chattopadhyay, S. (2022). Geo-spatial Assessment of Inherent Smart Urban Attributes of Traditional Neighborhood-Level Communities in India. In: Patnaik, S., Sen, S., Ghosh, S. (eds) Smart Cities and Smart Communities. Smart Innovation, Systems and Technologies, vol 294. Springer, Singapore. https://doi.org/10.1007/978-981-19-1146-0_17

Download citation

Publish with us

Policies and ethics