Skip to main content

Multiphase Reactors in Photocatalytic Treatment of Dye Wastewaters: Design and Scale-Up Considerations

  • Chapter
  • First Online:
Advanced Oxidation Processes in Dye-Containing Wastewater

Abstract

Treatment of dye wastewaters is important to recover and reuse the water in order to mitigate the impending freshwater crisis precipitated by a growing population, industrialization and declining freshwater reserves. Photocatalysis is very effective in complete mineralization of the different pollutants present, but the complex design, construction and scale-up of photocatalytic reactors for industrial-scale applications is still an open problem. Among the different configurations of reactors studied, the work on multiphase photocatalytic reactors is comparatively less. In this chapter, after a brief look at the basic fundamentals, a comprehensive review of the different multiphase photocatalytic reactors is presented with the aim of showing why this type could be a better option for the degradation of toxic dyes. The important operational parameters are discussed followed by an overview of the issues encountered in scale-up. Finally, the future aspects concerning the use of multiphase reactors for photocatalytic treatment of dye wastewaters are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angel J, Loftus A (2019) With-against-and-beyond the human right to water. Geoforum 98:206–213. https://doi.org/10.1016/j.geoforum.2017.05.002

    Article  Google Scholar 

  2. Zhao F, Zhou X, Liu Y et al (2019) Super Moisture-absorbent gels for all-weather atmospheric water harvesting. Adv Mater 31:1806446. https://doi.org/10.1002/adma.201806446

    Article  CAS  Google Scholar 

  3. Zhang Q, Xu P, Qian H (2020) Groundwater quality assessment using improved Water Quality Index (WQI) and Human Health Risk (HHR) evaluation in a semi-arid region of Northwest China. Expo Heal 12:487–500. https://doi.org/10.1007/s12403-020-00345-w

    Article  CAS  Google Scholar 

  4. Zhang Z, Shi M, Chen KZ et al (2021) Water scarcity will constrain the formation of a world-class megalopolis in North China. npj Urban Sustain 1:13. https://doi.org/10.1038/s42949-020-00012-8

  5. Griffiths JK (2017) Waterborne diseases. In: International encyclopedia of public health. Elsevier, pp 388–401

    Google Scholar 

  6. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  7. Han Y, Li H, Liu M et al (2016) Purification treatment of dyes wastewater with a novel micro-electrolysis reactor. Sep Purif Technol 170:241–247. https://doi.org/10.1016/j.seppur.2016.06.058

    Article  CAS  Google Scholar 

  8. Rodriguez Couto S, Rodriguez A, Paterson RRM et al (2006) Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor. Lett Appl Microbiol 060316073800005. https://doi.org/10.1111/j.1472-765X.2006.01879.x

  9. Sridewi N, Lee Y-F, Sudesh K (2011) Simultaneous adsorption and photocatalytic degradation of malachite green using electrospun P(3HB)-TiO2 nanocomposite fibers and films. Int J Photoenergy 2011:1–11. https://doi.org/10.1155/2011/597854

    Article  CAS  Google Scholar 

  10. Jo W-K, Park GT, Tayade RJ (2015) Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor. J Chem Technol Biotechnol 90:2280–2289. https://doi.org/10.1002/jctb.4547

    Article  CAS  Google Scholar 

  11. Selvakumar S, Manivasagan R, Chinnappan K (2013) Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech 3:71–79. https://doi.org/10.1007/s13205-012-0073-5

  12. Rajeshwar K, Osugi ME, Chanmanee W et al (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C Photochem Rev 9:171–192. https://doi.org/10.1016/j.jphotochemrev.2008.09.001

    Article  CAS  Google Scholar 

  13. Asghar A, Ramzan N, Jamal BU et al (2020) Low frequency ultrasonic‐assisted Fenton oxidation of textile wastewater: process optimization and electrical energy evaluation. Water Environ J 34:523–535. https://doi.org/10.1111/wej.12482

  14. Patil S (2019) Synthesis and optical properties of Near-Infrared (NIR) absorbing azo dyes. Curr Trends Fash Technol Text Eng 4. https://doi.org/10.19080/CTFTTE.2019.04.555649

  15. Gregory P (2003) Metal complexes as speciality dyes and pigments. In: Comprehensive coordination chemistry II. Elsevier, pp 549–579

    Google Scholar 

  16. Marchis T, Avetta P, Bianco-Prevot A et al (2011) Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. J Inorg Biochem 105:321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009

    Article  CAS  Google Scholar 

  17. Riaz M, Ijaz B, Riaz A, Amjad M (2018) Improvement of waste water quality by application of mixed algal inocula. Bangladesh J Sci Ind Res 53:77–82. https://doi.org/10.3329/bjsir.v53i1.35913

    Article  CAS  Google Scholar 

  18. Javaid R, Qazi UY (2019) Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int J Environ Res Public Health 16:2066. https://doi.org/10.3390/ijerph16112066

    Article  CAS  Google Scholar 

  19. Hussain SN, Asghar HMA, Sattar H et al (2015) Free chlorine formation during electrochemical regeneration of a graphite intercalation compound adsorbent used for wastewater treatment. J Appl Electrochem 45:611–621. https://doi.org/10.1007/s10800-015-0814-3

    Article  CAS  Google Scholar 

  20. Pagga U, Brown D (1986) The degradation of dyestuffs: Part II behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15:479–491. https://doi.org/10.1016/0045-6535(86)90542-4

    Article  CAS  Google Scholar 

  21. Pang YL, Abdullah AZ (2013) Current status of textile industry wastewater management and research progress in Malaysia: a review. Clean Soil Air Water 41:751–764. https://doi.org/10.1002/clen.201000318

    Article  CAS  Google Scholar 

  22. Senthil Kumar P, Saravanan A (2017) Sustainable wastewater treatments in textile sector. In: Sustainable fibres and textiles. Elsevier, pp 323–346

    Google Scholar 

  23. Shang N-C, Chen Y-H, Yang Y-P et al (2006) Ozonation of dyes and textile wastewater in a rotating packed bed. J Environ Sci Heal Part A 41:2299–2310. https://doi.org/10.1080/10934520600873043

  24. Vacchi FI, Albuquerque AF, Vendemiatti JA et al (2013) Chlorine disinfection of dye wastewater: implications for a commercial azo dye mixture. Sci Total Environ 442:302–309. https://doi.org/10.1016/j.scitotenv.2012.10.019

    Article  CAS  Google Scholar 

  25. Abid MF, Zablouk MA, Abid-Alameer AM (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian J Environ Health Sci Eng 9:17. https://doi.org/10.1186/1735-2746-9-17

    Article  CAS  Google Scholar 

  26. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  CAS  Google Scholar 

  27. Jiang M, Ye K, Deng J et al (2018) Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment. Environ Sci Technol 52:10698–10708. https://doi.org/10.1021/acs.est.8b02984

    Article  CAS  Google Scholar 

  28. Kandisa RV, Saibaba KV N (2016) Dye removal by adsorption: a review. J Bioremediation Biodegrad 07. https://doi.org/10.4172/2155-6199.1000371

  29. Buthiyappan A, Abdul Aziz AR, Wan Daud WMA (2016) Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev Chem Eng 32:1–47. https://doi.org/10.1515/revce-2015-0034

    Article  CAS  Google Scholar 

  30. Arslan İ, Akmehmet Balcioǧlu I, Tuhkanen T (1999) Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere 39:2767–2783. https://doi.org/10.1016/S0045-6535(99)00211-8

    Article  CAS  Google Scholar 

  31. Ghaly MY, Farah JY, Fathy AM (2007) Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation. Desalination 217:74–84. https://doi.org/10.1016/j.desal.2007.01.013

    Article  CAS  Google Scholar 

  32. Sarto S, Paesal P, Tanyong IB et al (2019) Catalytic degradation of textile wastewater effluent by peroxide oxidation assisted by UV light irradiation. Catalysts 9:509. https://doi.org/10.3390/catal9060509

    Article  CAS  Google Scholar 

  33. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:103248. https://doi.org/10.1016/j.jece.2019.103248

  34. Chimupala Y, Phromma C, Yimklan S et al (2020) Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles. RSC Adv 10:28567–28575. https://doi.org/10.1039/D0RA04746E

    Article  CAS  Google Scholar 

  35. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462–463:178–195. https://doi.org/10.1016/j.apcata.2013.04.039

    Article  CAS  Google Scholar 

  36. Zhang J, Tian B, Wang L et al (2018) Mechanism of photocatalysis, pp 1–15

    Google Scholar 

  37. Ashar A, Bhatti IA, Ashraf M et al (2020) Fe3+ @ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J Clean Prod 246:119010. https://doi.org/10.1016/j.jclepro.2019.119010

    Article  CAS  Google Scholar 

  38. Pelizzetti E, Serpone N (eds) (1986) Homogeneous and heterogeneous photocatalysis. Springer, Netherlands, Dordrecht

    Google Scholar 

  39. Loddo V, Bellardita M, Camera-Roda G et al (2018) Heterogeneous photocatalysis. In: Current trends and future developments on (bio-) membranes. Elsevier, pp 1–43

    Google Scholar 

  40. Tan HL, Abdi FF, Ng YH (2019) Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem Soc Rev 48:1255–1271. https://doi.org/10.1039/C8CS00882E

    Article  CAS  Google Scholar 

  41. Vaiano V, Sannino D, Sacco O (2020) Heterogeneous photocatalysis. In: Nanomaterials for the detection and removal of wastewater pollutants. Elsevier, pp 285–301

    Google Scholar 

  42. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  43. Saeed K, Khan I, Gul T, Sadiq M (2017) Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Appl Water Sci 7:3841–3848. https://doi.org/10.1007/s13201-017-0535-3

    Article  CAS  Google Scholar 

  44. Tran Thi Thuong H, Tran Thi Kim C, Nguyen Quang L, Kosslick H (2019) Highly active brookite TiO2-assisted photocatalytic degradation of dyes under the simulated solar−UVA radiation. Prog Nat Sci Mater Int 29:641–647. https://doi.org/10.1016/j.pnsc.2019.10.001

    Article  CAS  Google Scholar 

  45. Molinari R, Lavorato C, Argurio P (2020) Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions. Catalysts 10:1334. https://doi.org/10.3390/catal10111334

    Article  CAS  Google Scholar 

  46. Ohtani B (2011) Photocatalysis by inorganic solid materials, pp 395–430

    Google Scholar 

  47. Cates EL (2017) Photocatalytic water treatment: so where are we going with this? Environ Sci Technol 51:757–758. https://doi.org/10.1021/acs.est.6b06035

    Article  CAS  Google Scholar 

  48. Chong MN, Jin B, Chow CWKK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  49. Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29:342001. https://doi.org/10.1088/1361-6528/aac6ea

    Article  CAS  Google Scholar 

  50. Yashni G, Al-Gheethi A, Mohamed R, Al-Sahari M (2021) Reusability performance of green zinc oxide nanoparticles for photocatalysis of bathroom greywater. Water Pract Technol 16:364–376. https://doi.org/10.2166/wpt.2020.118

    Article  Google Scholar 

  51. Zhou L, Zhang H, Sun H et al (2016) Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal Sci Technol 6:7002–7023. https://doi.org/10.1039/C6CY01195K

    Article  CAS  Google Scholar 

  52. Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A Chem 104:1–12. https://doi.org/10.1016/S1010-6030(96)04538-8

    Article  CAS  Google Scholar 

  53. Krishna R, Sie ST (1994) Strategies for multiphase reactor selection. Chem Eng Sci 49:4029–4065. https://doi.org/10.1016/S0009-2509(05)80005-3

    Article  CAS  Google Scholar 

  54. Peschel A, Hentschel B, Freund H, Sundmacher K (2012) Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes. Chem Eng J 188:126–141. https://doi.org/10.1016/j.cej.2012.01.123

    Article  CAS  Google Scholar 

  55. Pangarkar VG (2014) Multiphase reactors. Design of multiphase reactors. Wiley, Hoboken, NJ, pp 47–86

    Google Scholar 

  56. Alalm MG, Djellabi R, Meroni D et al (2021) Toward scaling-up photocatalytic process for multiphase environmental applications. Catalysts 11:562. https://doi.org/10.3390/catal11050562

    Article  CAS  Google Scholar 

  57. Teekateerawej S, Nishino J, Nosaka Y (2006) TiO2 photocatalytic micro-channel reactors using capillary plates. Adv Mater Res 11–12:303–306. https://doi.org/10.4028/www.scientific.net/AMR.11-12.303

    Article  Google Scholar 

  58. Das S, Mahalingam H (2019) Exploring the synergistic interactions of TiO2, rGO, and g-C3N4 catalyst admixtures in a polystyrene nanocomposite photocatalytic film for wastewater treatment: unary, binary and ternary systems. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.103246

  59. Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46:1101–1112. https://doi.org/10.1016/j.watres.2011.12.009

    Article  CAS  Google Scholar 

  60. Miranda-Garcia N, Suarez S, Sanchez B et al (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103:294–301. https://doi.org/10.1016/j.apcatb.2011.01.030

    Article  CAS  Google Scholar 

  61. Ehrampoush MH, Moussavi GR, Ghaneian MT et al (2011) Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Iran J Environ Heal Sci Eng 8:35–40

    CAS  Google Scholar 

  62. Rao NN, Chaturvedi V, Li Puma G (2012) Novel pebble bed photocatalytic reactor for solar treatment of textile wastewater. Chem Eng J 184:90–97. https://doi.org/10.1016/j.cej.2012.01.004

    Article  CAS  Google Scholar 

  63. Baghbani Ghatar S, Allahyari S, Rahemi N, Tasbihi M (2018) Response surface methodology optimization for photodegradation of methylene blue in a ZnO coated flat plate continuous photoreactor. Int J Chem React Eng 16. https://doi.org/10.1515/ijcre-2017-0221

  64. Sutisna RM, Wibowo E et al (2017) Novel solar photocatalytic reactor for wastewater treatment. IOP Conf Ser Mater Sci Eng 214:012010. https://doi.org/10.1088/1757-899X/214/1/012010

    Article  Google Scholar 

  65. Sacco O, Sannino D, Vaiano V (2019) Packed bed photoreactor for the removal of water pollutants using visible light emitting diodes. Appl Sci 9:472. https://doi.org/10.3390/app9030472

    Article  CAS  Google Scholar 

  66. Li F, Szeto W, Huang H et al (2017) A Photocatalytic rotating disc reactor with TiO2 nanowire arrays deposited for industrial wastewater treatment. Molecules 22:337. https://doi.org/10.3390/molecules22020337

    Article  CAS  Google Scholar 

  67. Zhang Z, Wu H, Yuan Y et al (2012) Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chem Eng J 184:9–15. https://doi.org/10.1016/j.cej.2011.02.057

    Article  CAS  Google Scholar 

  68. Vaiano V, Sacco O, Pisano D et al (2015) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160. https://doi.org/10.1016/j.ces.2015.06.023

    Article  CAS  Google Scholar 

  69. Di Capua G, Femia N, Migliaro M et al (2017) Intensification of a flat-plate photocatalytic reactor performances by innovative visible light modulation techniques: A proof of concept. Chem Eng Process Process Intensif 118:117–123. https://doi.org/10.1016/j.cep.2017.05.004

    Article  CAS  Google Scholar 

  70. Claes T, Dilissen A, Leblebici ME, Van Gerven T (2019) Translucent packed bed structures for high throughput photocatalytic reactors. Chem Eng J 361:725–735. https://doi.org/10.1016/j.cej.2018.12.107

    Article  CAS  Google Scholar 

  71. Jiang H, Zhang G, Huang T et al (2010) Photocatalytic membrane reactor for degradation of acid red B wastewater. Chem Eng J 156:571–577. https://doi.org/10.1016/j.cej.2009.04.011

    Article  CAS  Google Scholar 

  72. Sacco O, Vaiano V, Sannino D (2020) Main parameters influencing the design of photocatalytic reactors for wastewater treatment: a mini review. J Chem Technol Biotechnol jctb.6488. https://doi.org/10.1002/jctb.6488

  73. Braham RJ, Harris AT (2009) Review of Major Design and scale-up considerations for solar photocatalytic reactors. Ind Eng Chem Res 48:8890–8905. https://doi.org/10.1021/ie900859z

    Article  CAS  Google Scholar 

  74. Lindstrom H, Wootton R, Iles A (2007) High surface area titania photocatalytic microfluidic reactors. AIChE J 53:695–702. https://doi.org/10.1002/aic.11096

    Article  CAS  Google Scholar 

  75. Regmi C, Lotfi S, Espíndola JC et al (2020) Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-coated PES membrane. Catalysts 10:725. https://doi.org/10.3390/catal10070725

    Article  CAS  Google Scholar 

  76. Ling CM, Mohamed AR, Bhatia S (2004) Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57:547–554. https://doi.org/10.1016/j.chemosphere.2004.07.011

    Article  CAS  Google Scholar 

  77. Manassero A, Satuf ML, Alfano OM (2017) Photocatalytic reactors with suspended and immobilized TiO2: comparative efficiency evaluation. Chem Eng J 326:29–36. https://doi.org/10.1016/j.cej.2017.05.087

    Article  CAS  Google Scholar 

  78. Adams M, Campbell I, McCullagh C et al (2013) From ideal reactor concepts to reality: the novel drum reactor for photocatalytic wastewater treatment. Int J Chem React Eng 11:621–632. https://doi.org/10.1515/ijcre-2012-0012

    Article  Google Scholar 

  79. Vaiano V, Sacco O, Stoller M et al (2014) Influence of the photoreactor configuration and of different light sources in the photocatalytic treatment of highly polluted wastewater. Int J Chem React Eng 12:63–75. https://doi.org/10.1515/ijcre-2013-0090

    Article  CAS  Google Scholar 

  80. Boyjoo Y, Ang M, Pareek V (2013) Light intensity distribution in multi-lamp photocatalytic reactors. Chem Eng Sci 93:11–21. https://doi.org/10.1016/j.ces.2012.12.045

    Article  CAS  Google Scholar 

  81. Pareek V, Chong S, Tadé M, Adesina AA (2008) Light intensity distribution in heterogenous photocatalytic reactors. Asia-Pacific J Chem Eng 3:171–201. https://doi.org/10.1002/apj.129

    Article  CAS  Google Scholar 

  82. Amano F, Nogami K, Tanaka M, Ohtani B (2010) Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure. Langmuir 26:7174–7180. https://doi.org/10.1021/la904274c

    Article  CAS  Google Scholar 

  83. Mazinani B, Masrom AK, Beitollahi A, Luque R (2014) Photocatalytic activity, surface area and phase modification of mesoporous SiO2–TiO2 prepared by a one-step hydrothermal procedure. Ceram Int 40:11525–11532. https://doi.org/10.1016/j.ceramint.2014.03.071

    Article  CAS  Google Scholar 

  84. Li Q, Zhang N, Yang Y et al (2014) High Efficiency photocatalysis for pollutant degradation with MoS 2 /C 3 N 4 heterostructures. Langmuir 30:8965–8972. https://doi.org/10.1021/la502033t

    Article  CAS  Google Scholar 

  85. Lv P, Xu C, Peng B (2020) Design of a silicon photocatalyst for high-efficiency photocatalytic water splitting. ACS Omega 5:6358–6365. https://doi.org/10.1021/acsomega.9b03755

    Article  CAS  Google Scholar 

  86. Rajamanickam D, Shanthi M (2016) Photocatalytic degradation of an organic pollutant by zinc oxide—solar process. Arab J Chem 9:S1858–S1868. https://doi.org/10.1016/j.arabjc.2012.05.006

    Article  CAS  Google Scholar 

  87. Santhosh C, Malathi A, Daneshvar E et al (2018) Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci Rep 8:15531. https://doi.org/10.1038/s41598-018-33818-9

    Article  CAS  Google Scholar 

  88. Fathinia M, Khataee AR (2013) Residence time distribution analysis and optimization of photocatalysis of phenazopyridine using immobilized TiO2 nanoparticles in a rectangular photoreactor. J Ind Eng Chem 19:1525–1534. https://doi.org/10.1016/j.jiec.2013.01.019

    Article  CAS  Google Scholar 

  89. Visan A, van Ommen JR, Kreutzer MT, Lammertink RGH (2019) Photocatalytic reactor design: guidelines for kinetic investigation. Ind Eng Chem Res 58:5349–5357. https://doi.org/10.1021/acs.iecr.9b00381

    Article  CAS  Google Scholar 

  90. Moon J, Lee K, Kim S (2015) A study of the temperature dependency for photocatalytic VOC degradation chamber test under UVLED irradiations. Korean Chem Eng Res 53:755–761. https://doi.org/10.9713/kcer.2015.53.6.755

    Article  CAS  Google Scholar 

  91. Serpone N (2018) Heterogeneous photocatalysis and prospects of TiO2-based photocatalytic DeNOxing the atmospheric environment. Catalysts 8:553. https://doi.org/10.3390/catal8110553

    Article  CAS  Google Scholar 

  92. Fanourakis SK, Peña-Bahamonde J, Bandara PC, Rodrigues DF (2020) Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. npj Clean Water 3:1. https://doi.org/10.1038/s41545-019-0048-8

  93. Lavand AB, Malghe YS (2015) Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int J Photochem 2015:1–9. https://doi.org/10.1155/2015/790153

    Article  Google Scholar 

  94. Cho Y, Yamaguchi A, Uehara R et al (2020) Temperature dependence on bandgap of semiconductor photocatalysts. J Chem Phys 152:231101. https://doi.org/10.1063/5.0012330

    Article  CAS  Google Scholar 

  95. Meng F, Liu Y, Wang J et al (2018) Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism. J Colloid Interface Sci 532:321–330. https://doi.org/10.1016/j.jcis.2018.07.131

    Article  CAS  Google Scholar 

  96. Porley V, Robertson N (2020) Substrate and support materials for photocatalysis. In: Nanostructured photocatalysts. Elsevier, pp 129–171

    Google Scholar 

  97. Lopez L, Daoud WA, Dutta D et al (2013) Effect of substrate on surface morphology and photocatalysis of large-scale TiO2 films. Appl Surf Sci 265:162–168. https://doi.org/10.1016/j.apsusc.2012.10.156

    Article  CAS  Google Scholar 

  98. Yang Z, Liu M, Wang X (2018) Experiment study and modeling of novel mini-bubble column photocatalytic reactor with multiple micro-bubbles. Chem Eng Process Process Intensif 124:269–281. https://doi.org/10.1016/j.cep.2018.01.019

    Article  CAS  Google Scholar 

  99. Bessegato GG, Cardoso JC, Zanoni MVB (2015) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal Today 240:100–106. https://doi.org/10.1016/j.cattod.2014.03.073

    Article  CAS  Google Scholar 

  100. Geng Q, Cui W (2010) Adsorption and photocatalytic degradation of reactive brilliant red K-2BP by TiO2/AC in bubbling fluidized bed photocatalytic reactor. Ind Eng Chem Res 49(22):11321–11330. https://doi.org/10.1021/ie101533x

  101. Das S, Mahalingam H (2019) Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. J Environ Chem Eng 7:103289. https://doi.org/10.1016/j.jece.2019.103289

    Article  CAS  Google Scholar 

  102. Das S, Mahalingam H (2020) Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater. J Hazard Mater 383. https://doi.org/10.1016/j.jhazmat.2019.121219

  103. Desa AL, Hairom NHH, Sidik DAB et al (2019) A comparative study of ZnO-PVP and ZnO-PEG nanoparticles activity in membrane photocatalytic reactor (MPR) for industrial dye wastewater treatment under different membranes. J Environ Chem Eng 7:103143. https://doi.org/10.1016/j.jece.2019.103143

    Article  CAS  Google Scholar 

  104. Esquivel K, Arriaga LG, Rodríguez FJ et al (2009) Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res 43:3593–3603. https://doi.org/10.1016/j.watres.2009.05.035

    Article  CAS  Google Scholar 

  105. Kim S, Kim M, Lim SK, Park Y (2017) Titania-coated plastic optical fiber fabrics for remote photocatalytic degradation of aqueous pollutants. J Environ Chem Eng 5:1899–1905. https://doi.org/10.1016/j.jece.2017.03.036

    Article  CAS  Google Scholar 

  106. Gallo JC, Mariano MB, Lucanas AD et al (2015) Photocatalytic degradation of turquoise blue dye using immobilized AC/TiO2: optimization of process parameters and pilot plant investigation. J Eng Sci Technol 10:64–73

    Google Scholar 

  107. Das S, Mahalingam H (2019) Reusable floating polymer nanocomposite photocatalyst for the efficient treatment of dye wastewaters under scaled-up conditions in batch and recirculation modes. J Chem Technol Biotechnol 94:2597–2608. https://doi.org/10.1002/jctb.6069

    Article  CAS  Google Scholar 

  108. Meng Z, Zhang X, Qin J (2013) A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst. Nanoscale 5:4687. https://doi.org/10.1039/c3nr00775h

    Article  CAS  Google Scholar 

  109. He Z, Li Y, Zhang Q, Wang H (2010) Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Appl Catal B Environ 93:376–382. https://doi.org/10.1016/j.apcatb.2009.10.011

    Article  CAS  Google Scholar 

  110. Katayama K, Takeda Y, Kuwabara K, Kuwahara S (2012) A novel photocatalytic microreactor bundle that does not require an electric power source. Chem Commun 48:7368. https://doi.org/10.1039/c2cc33525e

    Article  CAS  Google Scholar 

  111. Nair VR, Shetty Kodialbail V (2020) Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes. Environ Sci Pollut Res 27:14441–14453. https://doi.org/10.1007/s11356-020-07959-2

    Article  CAS  Google Scholar 

  112. Neolaka YAB, Ngara ZS, Lawa Y et al (2019) Simple design and preliminary evaluation of continuous submerged solid small-scale laboratory photoreactor (CS4PR) using TiO2/NO3-@TC for dye degradation. J Environ Chem Eng 7:103482. https://doi.org/10.1016/j.jece.2019.103482

    Article  CAS  Google Scholar 

  113. Akram T, Ahmad N, Sheikh I (2016) Photocatalytic degradation of synthetic textile effluent by modified sol-gel, synthesized mobilized and immobilized TiO2, and Ag-doped TiO2. Polish J Environ Stud 25:1391–1402. https://doi.org/10.15244/pjoes/62102

  114. Hamal DB, Haggstrom JA, Marchin GL, et al (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26. https://doi.org/10.1021/la902844r

  115. Khenniche L, Favier L, Bouzaza A et al (2015) Photocatalytic degradation of bezacryl yellow in batch reactors—feasibility of the combination of photocatalysis and a biological treatment. Environ Technol 36:1–10. https://doi.org/10.1080/09593330.2014.934740

    Article  CAS  Google Scholar 

  116. Mohammed Redha Z, Abdulla Yusuf H, Amin R, Bououdina M (2020) The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab J Basic Appl Sci 27:287–298. https://doi.org/10.1080/25765299.2020.1800163

    Article  Google Scholar 

  117. Mosleh S, Rahimi MR, Ghaedi M et al (2016) Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Adv 6:17204–17214. https://doi.org/10.1039/C5RA24564H

    Article  CAS  Google Scholar 

  118. Sauer T, Cesconeto Neto G, José H, Moreira RFP (2002) Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J Photochem Photobiol A Chem 149:147–154. https://doi.org/10.1016/S1010-6030(02)00015-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mahalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Mahalingam, H. (2022). Multiphase Reactors in Photocatalytic Treatment of Dye Wastewaters: Design and Scale-Up Considerations. In: Muthu, S.S., Khadir, A. (eds) Advanced Oxidation Processes in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0987-0_10

Download citation

Publish with us

Policies and ethics