Skip to main content

Bacterial Extracellular Polymeric Substances for Degradation of Textile Dyes

  • Chapter
  • First Online:
Polymer Technology in Dye-containing Wastewater

Abstract

The eminence of water has been worsening as a result of anthropogenic actions, unplanned urbanization, rapid industrialization, population growth, and amateurish utilization of natural water bodies. The wastewater produced during the dyeing and finishing process is characterized by strong color, high chemical oxygen demand, high temperature, high pH, and low biodegradability. The removal of these dyes from effluents by chemical and physical methods has been described by many researchers. At present, the practice of natural and amended polymers for the confiscation of dyes from effluent is becoming effective and common. Because of their great efficiency, biodegradability, lack of secondary pollution, and lack of toxicity, biopolymeric substances (BPS) are considered promising alternative to predictable chemical polymers. Two types of BPS, i.e., intracellular and extracellular polymeric substances. Extracellular polymeric substances (EPS) are a high-molecular-weight combination of polymers released by microorganisms that adhere to the cell surface and divide into firmly bound and loosely bound EPS, allowing them to bind to the cell surface. EPS efficiently adsorbed to textile dye contaminants in wastewater. Microbial aggregation produced by EPS plays very important part in biofilm formation, contaminant settling, and the biodegradation of textile dyes. The functional groups present in EPS, such as hydroxyl groups, carboxyl groups, and amines, can bind to active sites in the textile dyes via biosorption. As a result, it’s thought that EPS in sludge can be used to remove dye from wastewater via biosorption. However, because EPS are so complicated, our understanding of them is far from comprehensive, and much more research is needed to completely comprehend their specific functions in the biological therapy process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akanya S, Krishna AR, Chockalingam J, Balakrishnan L, Janarthanan NT, Ramachandran P, Palanisami SD, Dhanaraj SS, Joseph S, Jayalekshmi SK (2020) Extraction of exopolysaccharide from enterococcus faecium grdaa and the application of its silver nanoparticles in degradation of azo dyes. J Adv Sci Res 11:152–157

    CAS  Google Scholar 

  2. Bourven I, Costa G, Guibaud G (2012) Qualitative characterization of the protein fraction of exopolymeric substances (EPS) extracted with EDTA from sludge. Biores Technol 104:486–496

    Article  CAS  Google Scholar 

  3. Cadieux J, Kuzio J, Milazzo F, Kropinski A (1983) Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa. J Bacteriol 155:817–825

    Article  CAS  Google Scholar 

  4. Cania B, Vestergaard G, Krauss M, Fliessbach A, Schloter M, Schulz S (2019) A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environ Microbiome 14:1–14

    Article  Google Scholar 

  5. Cao B, Zhang W, Du Y, Wang R, Usher SP, Scales PJ, Wang D (2018) Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: effect of operating conditions. Water Res 130:363–375

    Article  CAS  Google Scholar 

  6. Carmen Z, Daniela S (2012) Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview (IntechOpen). https://doi.org/10.5772/32373

  7. Caudan C, Filali A, Spérandio M, Girbal-Neuhauser E (2014) Multiple EPS interactions involved in the cohesion and structure of aerobic granules. Chemosphere 117:262–270

    Article  CAS  Google Scholar 

  8. Cescutti P, Toffanin R, Pollesello P, Sutherland IW (1999) Structural determination of the acidic exopolysaccharide produced by a pseudomonas sp. strain 1.15. Carbohyd Res 315:159–168

    Article  CAS  Google Scholar 

  9. Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: part I. comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 38:237–245

    Article  CAS  Google Scholar 

  10. Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636

    Article  Google Scholar 

  11. Costerton J, Irvin R, Cheng K (1981) The bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35:299–324

    Article  CAS  Google Scholar 

  12. Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922. https://doi.org/10.3389/fmicb.2017.00922

    Article  Google Scholar 

  13. Ding Y, Tian Y, Li Z, Zuo W, Zhang J (2015) A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor. Biores Technol 192:105–114

    Article  CAS  Google Scholar 

  14. Drakou E-M, Amorim CL, Castro PM, Panagiotou F, Vyrides I (2018) Wastewater valorization by pure bacterial cultures to extracellular polymeric substances (EPS) with high emulsifying potential and flocculation activities. Waste Biomass Valorization 9:2557–2564

    Article  CAS  Google Scholar 

  15. Drulis-Kawa Z (2020) Editorial bacterial surface glycans as the virulence agent and the target for predators, therapy, and the immune system. Front Microbiol 11:3211

    Article  Google Scholar 

  16. Duman O, Tunç S, Polat TG, BozoÄŸlan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohyd Polym 147:79–88

    Article  CAS  Google Scholar 

  17. Esparza-Soto M, Westerhoff P (2003) Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res 37:2301–2310

    Article  CAS  Google Scholar 

  18. Fleming ZL, Monks PS, Rickard AR, Heard DE, Bloss WJ, Seakins PW, Still T, Sommariva R, Pilling MJ, Morgan R (2006) Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002. Atmos Chem Phys 6:2193–2214

    Article  CAS  Google Scholar 

  19. Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-part I: structural and ecological aspects. Water Sci Technol 43:1–8

    Article  CAS  Google Scholar 

  20. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  21. Geyik AG, Kılıç B, Çeçen F (2016) Extracellular polymeric substances (EPS) and surface properties of activated sludges: effect of organic carbon sources. Environ Sci Pollut Res 23:1653–1663

    Article  CAS  Google Scholar 

  22. GĂ³es MM, Keller M, Oliveira VM, Villalobos LDG, Moraes JCG, Carvalho GM (2016) Polyurethane foams synthesized from cellulose-based wastes: kinetics studies of dye adsorption. Ind Crops Prod 85:149–158

    Article  CAS  Google Scholar 

  23. Gotoh Y, Maruo T, Tanaka K, Ohashi S, Yoshida K-I, Suzuki T (2021) Loss of the intrinsic plasmid-encoded eps genes in Lactococcus lactis subsp. cremoris FC grown at elevated temperature abolishes exopolysaccharide biosynthesis. Food Sci Technol Res 27:241–248

    Article  CAS  Google Scholar 

  24. Guibaud G, van Hullebusch E, Bordas F (2006) Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere 64:1955–1962

    Article  CAS  Google Scholar 

  25. Ha J, Gélabert A, Spormann AM, Brown GE Jr (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15

    Article  CAS  Google Scholar 

  26. Hu Y-Q, Wei W, Gao M, Zhou Y, Wang G-X, Zhang Y (2019) Effect of pure oxygen aeration on extracellular polymeric substances (EPS) of activated sludge treating saline wastewater. Process Saf Environ Prot 123:344–350

    Article  CAS  Google Scholar 

  27. Inbaraj BS, Chiu CP, Ho GH, Yang J, Chen BH (2008) Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(γ-glutamic acid). Bioresour Technol 99(5):1026–1035

    Article  CAS  Google Scholar 

  28. Ishak SA, Murshed MF, Md Akil H, Ismail N, Md Rasib SZ, Al-Gheethi AAS (2020) The application of modified natural polymers in toxicant dye compounds wastewater: a review. Water 12:2032

    Article  CAS  Google Scholar 

  29. Jia C, Li X, Zhang L, Francis D, Tai P, Gong Z, Liu W (2017) Extracellular polymeric substances from a fungus are more effective than those from a bacterium in polycyclic aromatic hydrocarbon biodegradation. Water Air Soil Pollut 228:195

    Article  CAS  Google Scholar 

  30. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922. https://doi.org/10.1128/AEM.02289-09

    Article  CAS  Google Scholar 

  31. Jorand F, Boué-Bigne F, Block JC, Urbain V (1998) Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315

    Article  CAS  Google Scholar 

  32. Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  Google Scholar 

  33. Kamath MH, Pai A, Goveas LC (2021) Adsorption of malachite green by extracellular polymeric substance of Lysinibacillus sp. SS1: kinetics and isotherms. Heliyon 7(6):e07169. https://doi.org/10.1016/j.heliyon.2021.e07169

    Article  Google Scholar 

  34. Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Biores Technol 242:295–303

    Article  CAS  Google Scholar 

  35. Karunakaran E, Biggs CA (2010) Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl Microbiol Biotechnol 89(4):1161–1175. https://doi.org/10.1007/s00253-010-2919-2

    Article  CAS  Google Scholar 

  36. Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H-J, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    Article  CAS  Google Scholar 

  37. Kurade MB, Murugesan K, Selvam A, Yu S-M, Wong JW (2014) Ferric biogenic flocculant produced by Acidithiobacillus ferrooxidans enable rapid dewaterability of municipal sewage sludge: a comparison with commercial cationic polymer. Int Biodeterior Biodegradation 96:105–111

    Article  CAS  Google Scholar 

  38. Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Article  CAS  Google Scholar 

  39. Li R, Ning X-A, Sun J, Wang Y, Liang J, Lin M, Zhang Y (2015) Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production’s flocculation and dewatering potential. Biores Technol 194:233–239

    Article  CAS  Google Scholar 

  40. Liu S, Feng X, Gu F, Li X, Wang Y (2017) Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor. Chemosphere 186:287–294

    Article  CAS  Google Scholar 

  41. Liu Y, Fang HH (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge

    Google Scholar 

  42. Liu Y, Lam M, Fang H (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66

    Article  CAS  Google Scholar 

  43. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    Article  CAS  Google Scholar 

  44. Marvasi M, Visscher PT, Martinez LC (2010) Exopolymeric substances (EPS) from Bacillus subtilis : polymers and genes encoding their synthesis. FEMS Microbiol Lett 313(1):1–9

    Article  CAS  Google Scholar 

  45. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    Article  CAS  Google Scholar 

  46. Miao L, Zhang Q, Wang S, Li B, Wang Z, Zhang S, Zhang M, Peng Y (2018) Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate. Biores Technol 249:108–116

    Article  CAS  Google Scholar 

  47. Mohapatra RK, Behera SS, Patra JK, Thatoi H, Parhi PK (2020) Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. In: New and future developments in microbial biotechnology and bioengineering: microbial biofilms (Elsevier), pp 267–281

    Google Scholar 

  48. Moon DH, Dermatas D (2006) An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Eng Geol 85:67–74

    Article  Google Scholar 

  49. More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25

    Article  CAS  Google Scholar 

  50. Mosharaf M, Tanvir M, Haque M, Haque M, Khan M, Molla AH, Alam MZ, Islam M, Talukder M (2018) Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. Front Microbiol 9:1334

    Article  CAS  Google Scholar 

  51. Mustafa G, Zahid MT, Ali S, Abbas SZ, Rafatullah M (2021) Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate. J King Saud Univ Sci 101442

    Google Scholar 

  52. Ngulube T, Gumbo JR, Masindi V, Maity A (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manage 191:35–57

    Article  CAS  Google Scholar 

  53. Nielsen PH, Jahn A (1999) Extraction of EPS. In: Microbial extracellular polymeric substances (Springer), pp 49–72

    Google Scholar 

  54. Nielsen PH, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol 36:11–19

    Article  CAS  Google Scholar 

  55. Ning X-A, Yang C, Wang Y, Yang Z, Wang J, Li R (2014) Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol Bioprocess Eng 19:687–695

    Article  CAS  Google Scholar 

  56. Pan X, Liu J, Zhang D, Chen X, Li L, Song W, Yang J (2010) A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using three dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. Water SA 36:111–116

    Article  CAS  Google Scholar 

  57. Park C, Novak JT (2007) Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res 41:1679–1688

    Article  CAS  Google Scholar 

  58. Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK (2020) Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front microbiol 11:564513

    Article  Google Scholar 

  59. Russ R, Rau JR, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  60. Salama Y, Chennaoui M, Sylla A, Mountadar M, Rihani M, Assobhei O (2016) Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat 57:16220–16237

    Article  CAS  Google Scholar 

  61. Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160:1241–1253

    Article  CAS  Google Scholar 

  62. Sheng GP, Yu HQ, Li XY (2006) Stability of sludge flocs under shear conditions: roles of extracellular polymeric substances (EPS). Biotechnol Bioeng 93:1095–1102

    Article  CAS  Google Scholar 

  63. Sheng G-P, Yu H-Q, Li X-Y (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    Article  CAS  Google Scholar 

  64. Spaeth R, Wuertz S (2000) Extraction and quantification of extracellular polymeric substances from wastewater. Biofilms: investigative methods and applications. Technomic Publishers, Lancaster, pp 51–68

    Google Scholar 

  65. Späth R, Flemming H-C, Wuertz S (1998) Sorption properties of biofilms. Water Sci Technol 37:207–210

    Article  Google Scholar 

  66. Stolz A, Schmidt-Maag C, Denner E, Busse H, Egli T, Kämpfer P (2000) Description of Sphingomonas xenophaga sp. Nov. for strains BN6T and N, N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41

    Article  CAS  Google Scholar 

  67. Tian X, Shen Z, Han Z, Zhou Y (2019) The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: an overview. Bioresour Technol Rep 5:28–42

    Article  Google Scholar 

  68. Wang L, Li J (2013) Adsorption of CI reactive red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158

    Article  CAS  Google Scholar 

  69. Wang Z-W, Liu Y, Tay J-H (2007) Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl Microbiol Biotechnol 74:462–466

    Article  CAS  Google Scholar 

  70. Wingender J, Neu TR, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Microbial extracellular polymeric substances (Springer), pp 1–19

    Google Scholar 

  71. Xu Y, Li Z, Su K, Fan T, Cao L (2018) Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chem Eng J 341:371–382

    Article  CAS  Google Scholar 

  72. Yadav M, Yadav H (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13:309–318

    Article  CAS  Google Scholar 

  73. Zhang W, Cao B, Wang D, Ma T, Xia H, Yu D (2016) Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res 88:728–739

    Article  CAS  Google Scholar 

  74. Zhang X, Bishop PL (2003) Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50:63–69

    Article  CAS  Google Scholar 

  75. Zhao G, Ma F, Wei L, Chua H (2012) Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process. Biores Technol 113:83–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Rafatullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mustafa, G., Zahid, M.T., Ihsan, S., Zia, I., Abbas, S.Z., Rafatullah, M. (2022). Bacterial Extracellular Polymeric Substances for Degradation of Textile Dyes. In: Khadir, A., Muthu, S.S. (eds) Polymer Technology in Dye-containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0886-6_7

Download citation

Publish with us

Policies and ethics